Temperature prescription and control is important within biological media and in bioheat transport applications such as in hyperthermia cancer treatment in which the unhealthy tissue/organ is subject to an imposed heat flux. Thermal transport investigation and optimization is also important in designing heat management devices and small-scale porous-filled-channels utilized in electronic and biomedical applications. In this work, biological media or the stated heat management devices with a nonuniform geometry are modeled analytically as a combination of convergent, uniform and/or divergent configurations. The biological media is represented as blood saturated porous tissue matrix while incorporating cells and interstices. Two primary models, namely, adiabatic and constant temperature boundary conditions, are employed and the local thermal nonequilibrium and an imposed heat flux are fully accounted for in the presented analytical expressions. Fluid and solid temperature distributions and Nusselt number correlations are derived analytically for variable cross-sectional domain represented by convergent, divergent, and uniform or any combination thereof of these geometries while also incorporating internal heat generation in fluid and/or solid. Our results indicate that the geometrical variations have a substantial impact on the temperature field within the domain and on the surface with an imposed heat flux. It is illustrated that, the temperature distribution within a region of interest can be controlled by a proper design of the multisectional domain as well as proper selection of the porous matrix. These comprehensive analytical solutions are presented for the first time, to the best of the authors' knowledge in literature.

1.
Yoon
,
D. S.
,
Lee
,
Y. S.
,
Lee
,
Y.
,
Cho
,
H. J.
,
Sung
,
S. W.
,
Oh
,
K. W.
,
Cha
,
J.
, and
Lim
,
G.
, 2002, “
Precise Temperature Control and Rapid Thermal Cycling in a Micromachined DNA Polymerase Chain Reaction Chip
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
813
823
.
2.
Lee
,
D. S.
,
Tsai
,
C. Y.
,
Yuan
,
W. H.
,
Chen
,
P. J.
, and
Chen
,
P. H.
, 2004, “
A New Thermal Cycling Mechanism for Effective Polymerase Chain Reaction in Microliter Volumes
,”
Microsyst. Technol.
0946-7076,
10
, pp.
579
584
.
3.
Mahjoob
,
S.
,
Vafai
,
K.
, and
Beer
,
N. R.
, 2008, “
Rapid Microfluidic Thermal Cycler for Polymerase Chain Reaction Nucleic Acid Amplification
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
9–10
), pp.
2109
2122
.
4.
Hühmer
,
A. F. R.
, and
Landers
,
J. P.
, 2000, “
Noncontact Infrared-Mediated Thermocycling for Effective Polymerase Chain Reaction Amplification of DNA in Nanoliter Volumes
,”
Anal. Chem.
0003-2700,
72
(
21
), pp.
5507
5512
.
5.
Swerdlow
,
H.
,
Jones
,
B. J.
, and
Wittwer
,
C. T.
, 1997, “
Fully Automated DNA Reaction and Analysis in a Fluidic Capillary Instrument
,”
Anal. Chem.
0003-2700,
69
(
5
), pp.
848
855
.
6.
Zhao
,
C. Y.
, and
Lu
,
T. J.
, 2002, “
Analysis of Microchannel Heat Sinks for Electronics Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
24
), pp.
4857
4869
.
7.
Fedorov
,
A. G.
, and
Viskanta
,
R.
, 2000, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
3
), pp.
399
415
.
8.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2009, “
Analytical Characterization and Production of an Isothermal Surface for Biological and Electronics Applications
,”
ASME J. Heat Transfer
0022-1481,
131
(
5
), p.
052604
.
9.
Kim
,
S. J.
, 2004, “
Methods for Thermal Optimization of Microchannel Heat Sinks
,”
Heat Transfer Eng.
0145-7632,
25
(
1
), pp.
37
49
.
10.
Vasiliev
,
L. L.
, 2008, “
Micro and Miniature Heat Pipes—Electronic Component Coolers
,”
Appl. Therm. Eng.
1359-4311,
28
(
4
), pp.
266
273
.
11.
Udell
,
K. S.
, 1985, “
Heat Transfer in Porous Media Considering Phase Change and Capillarity—The Heat Pipe Effect
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
2
), pp.
485
495
.
12.
Vafai
,
K.
, and
Wang
,
W.
, 1992, “
Analysis of Flow and Heat Transfer Characteristics of an Asymmetrical Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
2087
2099
.
13.
Vafai
,
K.
,
Zhu
,
N.
, and
Wang
,
W.
, 1995, “
Analysis of Asymmetric Disk-Shaped and Flat Plate Heat Pipes
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
209
218
.
14.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2008, “
A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
15–16
), pp.
3701
3711
.
15.
Hunt
,
M. L.
, and
Tien
,
C. L.
, 1988, “
Effects of Thermal Dispersion on Forced Convection in Fibrous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
2
), pp.
301
309
.
16.
Zhao
,
C. Y.
,
Kim
,
T.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
, 2004, “
Thermal Transport in High Porosity Cellular Metal Foams
,”
J. Thermophys. Heat Transfer
0887-8722,
18
(
3
), pp.
309
317
.
17.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
, 2003, “
Metal Foams as Compact High Performance Heat Exchangers
,”
J. Mech. Mater.
,
35
, pp.
1161
1176
.
18.
Ebara
,
S.
,
Toda
,
S.
, and
Hashizume
,
H.
, 2000, “
Application of Porous Matrix to High Heat Load Removal System
,”
Heat Mass Transfer
0947-7411,
36
, pp.
273
276
.
19.
Rachedi
,
R.
, and
Chikh
,
S.
, 2001, “
Enhancement of Electronic Cooling by Insertion of Foam Materials
,”
Heat Mass Transfer
0947-7411,
37
, pp.
371
378
.
20.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2009, “
Analytical Characterization of Heat Transfer Through Biological Media Incorporating Hyperthermia Treatment
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
5–6
), pp.
1608
1618
.
21.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2010, “
Analysis of Bioheat Transport Through a Dual Layer Biological Media
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
031101
.
22.
Vafai
,
K.
, and
Tien
,
C. L.
, 1981, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
24
, pp.
195
203
.
23.
Quintard
,
M.
, and
Whitaker
,
S.
, 2000, “
Theoretical Analysis of Transport in Porous Media
,”
Handbook of Porous Media
,
K.
Vafai
, ed.,
Marcel Dekker
,
New York
, pp.
1
52
.
24.
Khaled
,
A. -R. A.
, and
Vafai
,
K.
, 2003, “
The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4989
5003
.
25.
Vafai
,
K.
, and
Tien
,
H. C.
, 1989, “
A Numerical Investigation of Phase Change Effects in Porous Materials
,”
Int. J. Heat Mass Transfer
0017-9310,
32
, pp.
1261
1277
.
26.
Amiri
,
A.
, and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow through Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
939
954
.
27.
Nield
,
D. A.
, and
Bejan
,
A.
, 2006,
Convection in Porous Media
,
Springer
,
New York
.
28.
Alazmi
,
B.
, and
Vafai
,
K.
, 2002, “
Constant Wall Heat Flux Boundary Conditions in Porous Media Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3071
3087
.
29.
Lee
,
D. Y.
, and
Vafai
,
K.
, 1999, “
Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
423
435
.
30.
Marafie
,
A.
, and
Vafai
,
K.
, 2001, “
Analysis of Non-Darcian Effects on Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4401
4411
.
31.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
, 2008, “
A Bioheat Transfer Model: Forced Convection in a Channel Occupied by a Porous Medium With Counterflow
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5534
5541
.
You do not currently have access to this content.