Although the effects of microgravity, earth gravity, and hypergravity (>1.5g) on pool boiling heat flux have been studied previously, pool boiling heat flux data over a continuous range of gravity levels (0–1.7 g) was unavailable until recently. The current work uses the results of a variable gravity, subcooled pool boiling experiment to develop a gravity scaling parameter for n-perfluorohexane/FC-72 in the buoyancy-dominated boiling regime (Lh/Lc>2.1). The heat flux prediction was then validated using heat flux data at different subcoolings and dissolved gas concentrations. The scaling parameter can be used as a tool to predict boiling heat flux at any gravity level in the buoyancy dominated regime if the data under similar experimental conditions are available at any other gravity level.

1.
Rohsenow
,
W. M.
, 1962, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
0097-6822,
84
, pp.
969
976
.
2.
Forster
,
H. K.
, and
Zuber
,
N.
, 1955, “
Dynamics of Vapor Bubbles and Boiling Heat Transfer
,”
AIChE J.
0001-1541,
1
, pp.
531
535
.
3.
Stephan
,
K.
, and
Abdelsalam
,
M.
, 1980, “
Heat Transfer Correlations for Natural Convection Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
23
, pp.
73
87
.
4.
Fritz
,
W.
, 1935, “
Berechnung des Maximalvolume von Dampfblasen
,”
Phys. Z.
0369-982X,
36
, pp.
379
388
.
5.
Siegel
,
R.
, and
Keshock
,
F. G.
, 1964, “
Effects of Reduced Gravity on Nucleate Boiling Bubble Dynamics in Saturated Water
,”
AIChE J.
0001-1541,
10
(
4
), pp.
509
517
.
6.
Kutateladze
,
S. S.
, 1948, “
On the Transition Film Boiling Under Natural Convection
,”
Kotloturbostroenie
, Vol.
3
, pp.
10
12
.
7.
Chang
,
Y. P.
, 1957, “
A Theoretical Analysis of Heat Transfer in Natural Convection and in Boiling
,”
Trans. ASME
0097-6822,
79
, pp.
1501
1513
.
8.
Zuber
,
N.
, 1959, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” AEC Report No. AECU-4439.
9.
Di Marco
,
P.
, 2003, “
Review of Reduced Gravity Boiling Heat Transfer: European Research
,”
J. Jpn. Soc. Microgravity Appl.
0915-3616,
20
(
4
), pp.
252
263
.
10.
Kim
,
J.
, 2003, “
Review of Reduced Gravity Boiling Heat Transfer: U.S. Research
,”
J. Jpn. Soc. Microgravity Appl.
0915-3616,
20
(
4
), pp.
264
271
.
11.
Ohta
,
H.
, 2003, “
Review of Reduced Gravity Boiling Heat Transfer: Japanese Research
,”
J. Jpn. Soc. Microgravity Appl.
0915-3616,
20
(
4
), pp.
272
285
.
12.
Lee
,
H. S.
,
Merte
,
H.
, and
Chiaramonte
,
F.
, 1997, “
Pool Boiling Curve in Microgravity
,”
J. Thermophys. Heat Transfer
0887-8722,
11
(
2
), pp.
216
222
.
13.
Straub
,
J.
, 2001, “
Boiling Heat Transfer and Bubble Dynamics in Microgravity
,”
Adv. Heat Transfer
0065-2717,
35
, pp.
57
172
.
14.
Kannengieser
,
O.
,
Colin
,
C.
,
Bergez
,
W.
, and
Lacapere
,
J.
, 2009, “
Nucleate Pool Boiling on a Flat Plate Heater Under Microgravity Conditions: Results of Parabolic Flight, and Development of a Correlation Predicting Heat Flux Variation Due to Gravity
,”
Proceedings of the Seventh ECI International Conference on Boiling Heat Transfer
, Florianopolis, Brazil, May 3–7.
15.
Raj
,
R.
,
Kim
,
J.
, and
McQuillen
,
J.
, 2009, “
Subcooled Pool Boiling Under Variable Gravity Environments
,”
J. Heat Transfer
0022-1481,
131
, pp.
091502
.
16.
Raj
,
R.
, and
Kim
,
J.
, 2010, “
Heater Size and Gravity Based Pool Boiling Regime Map: Transition Criteria Between Buoyancy and Surface Tension Dominated Boiling
,”
ASME J. Heat Transfer
0022-1481,
132
(
9
), p.
091503
.
17.
DeLombard
,
R.
,
McQuillen
,
J.
, and
Chao
,
D.
, 2008, “
Boiling Experiment Facility for Heat Transfer Studies in Microgravity
,”
Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 7–10.
18.
Rule
,
T. D.
, and
Kim
,
J.
, 1999, “
Heat Transfer Behavior on Small Heaters During Pool Boiling of FC-72
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
386
393
.
You do not currently have access to this content.