Reduced models for radiative heat transfer analysis through anisotropic medium are presented and evaluated. The models include two equivalent heat transfer models through isotropic medium using isotropic or Henyey–Greenstein scattering phase functions with arithmetic or weighted means radiative properties calculated over all incident direction and an anisotropic model with directional radiative properties coupled to an isotropic scattering phase function or directional anisotropically scattering phase function. The pertinence of the models is investigated by solving coupled conduction/radiation heat transfer through a slab of anisotropic fibrous medium with fiber randomly oriented in the plan parallel to the boundaries. Good agreements on heat fluxes and thermal conductivity are obtained for reduced anisotropic models and for reduced equivalent isotropic models with weighted mean radiative properties.

1.
Lee
,
S. C.
, 1986, “
Radiative Heat Transfer Through a Fibrous Medium: Allowance for Fiber Orientation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
36
(
3
), pp.
253
263
.
2.
Boulet
,
P.
,
Jeandel
,
G.
, and
Morlot
,
G.
, 1993, “
Model of Radiative Transfer in Fibrous Media-Matrix Method
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
18
), pp.
4287
4297
.
3.
Asllanaj
,
F.
,
Jeandel
,
G.
, and
Roche
,
J. R.
, 2001, “
Numerical Solution of Radiative Transfer Equation Coupled With Nonlinear Heat Conduction Equation
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
11
(
5
), pp.
449
473
.
4.
Milandri
,
A.
,
Asllanaj
,
F.
,
Jeandel
,
G.
, and
Roche
,
J. R.
, 2002, “
Heat Transfer by Radiation and Conduction in Fibrous Media Without Axial Symmetry
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
74
, pp.
585
603
.
5.
Zhang
,
C.
,
Kribus
,
A.
, and
Ben-Zvi
,
R.
, 2002, “
Effective Radiative Properties of a Cylinder Array
,”
ASME J. Heat Transfer
0022-1481,
124
(
1
), pp.
198
200
.
6.
Kamdem-Tagne
,
H. T.
, 2008, “
Etude du transfert thermique dans les milieu poreux anisotropes. Application aux isolants thermiques en fibres de silice
,” Ph.D. thesis, Institut des Sciences Appliquées de Lyon, Lyon, France.
7.
Lee
,
S. C.
, and
Cunnington
,
G. R.
, 2000, “
Conduction and Radiation Heat Transfer in High Porosity Fiber Thermal Insulation
,”
J. Thermophys. Heat Transfer
0887-8722,
14
(
2
), pp.
121
136
.
8.
Tong
,
T. W.
, and
Tien
,
C. L.
, 1980, “
Analytical Models for Thermal Radiation in Fibrous Insulations
,”
J. Therm. Insul.
0148-8287,
4
, pp.
27
44
.
9.
Viskanta
,
R.
, and
Mengüc
,
M. P.
, 1989, “
Radiative Transfer in Dispersed Media
,”
Appl. Mech. Rev.
0003-6900,
42
(
9
), pp.
241
259
.
10.
Cheng
,
Q.
, and
Zhou
,
H. -C.
, 2007, “
The DRESOR Method for a Collimated Irradiation on an Isotropically Scattering Layer
,”
ASME J. Heat Transfer
0022-1481,
129
(
5
), pp.
634
645
.
11.
Baillis
,
D.
, and
Sacadura
,
J. F.
, 2000, “
Thermal Radiation Properties of Dispersed Media: Theoretical Prediction and Experimental Characterization
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
67
, pp.
327
363
.
12.
Yuen
,
W. W.
, 2008, “
Definition and Evaluation of Mean Beam Lengths for Applications in Multidimensional Radiative Heat Transfer: A Mathematically Self-Consistent Approach
,”
ASME J. Heat Transfer
0022-1481,
130
(
11
), p.
114507
.
13.
Joseph
,
D.
,
Perez
,
P.
,
El Hafi
,
M.
, and
Cuenot
,
B.
, 2009, “
Discrete Ordinates and Monte Carlo Methods for Radiative Transfer Simulation Applied to Computational Fluid Dynamics Combustion Modeling
,”
ASME J. Heat Transfer
0022-1481,
131
(
5
), p.
052701
.
14.
Yuen
,
W. W.
, and
Cunnington
,
G.
, 2007, “
Radiative Heat Transfer Analysis of Fibrous Insulation Materials Using the Zonal-gef Method
,”
J. Thermophys. Heat Transfer
0887-8722,
21
(
1
), pp.
105
113
.
15.
Dombrovsky
,
L. A.
, 1996, “
Quartz-Fiber Thermal Insulation: Infrared Radiative Properties and Calculation of Radiative-Conductive Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
408
414
.
16.
Galaktionov
,
A. V.
,
Petrov
,
V. A.
, and
Stepanov
,
S. V.
, 1994, “
Combined Radiative-Conductive Heat Transfer in High-Temperature Fibrous Insulation of Reusable Orbital Space Vehicles
,”
High Temp.
0018-151X,
32
(
3
), pp.
375
381
.
17.
Zverev
,
V. G.
,
Gol’din
,
V. D.
, and
Nazarenko
,
V. A.
, 2008, “
Radiative-Conductive Heat Transfer in Fibrous Heat-Resistant Insulation Under Thermal Effect
,”
High Temp.
0018-151X,
46
(
1
), pp.
108
114
.
18.
Modest
,
M. F.
, and
Yang
,
J.
, 2008, “
Elliptic PDE Formulation and Boundary Conditions of the Spherical Harmonics Method of Arbitrary Order for General Three-Dimensional Geometries
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
109
, pp.
1641
1666
.
19.
Hassanzadeh
,
P.
, and
Raithby
,
G. D.
, 2009, “
The Efficient Iterative Solution of the P1 Equation
,”
ASME J. Heat Transfer
0022-1481,
131
(
1
), p.
014504
.
20.
Doermann
,
D.
, and
Sacadura
,
J. F.
, 1996, “
Heat Transfer in Open Cell Foam Insulation
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
88
93
.
21.
Andersen
,
F. M. B.
, and
Dyrboel
,
S.
, 1998, “
Modelling Radiative Heat Transfer in Fibrous Materials: The Use of Planck Mean Properties Compared to Spectral and Flux-Weighted Properties
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
60
(
4
), pp.
593
603
.
22.
Jeandel
,
G.
,
Boulet
,
P.
, and
Morlot
,
G.
, 1993, “
Radiative Transfer Through a Medium of Silica Fibres Oriented in Parallel Planes
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
2
), pp.
531
536
.
23.
Dombrovsky
,
L.
,
Randrianalisoa
,
J.
, and
Baillis
,
D.
, 2006, “
Modified Two-Flux Approximation for Identification of Radiative Properties of Absorbing and Scattering Media From Directional-Hemispherical Measurements
,”
J. Opt. Soc. Am. A
0740-3232,
23
(
1
), pp.
91
98
.
24.
Wu
,
H.
,
Fan
,
J.
, and
Du
,
N.
, 2007, “
Thermal Energy Transport Within Porous Polymer Materials: Effects of Fiber Characteristics
,”
J. Appl. Polym. Sci.
0021-8995,
106
, pp.
576
583
.
25.
Henyey
,
L. G.
, and
Greenstein
,
J. L.
, 1941, “
Diffuse Radiation in the Galaxy
,”
Astrophys. J.
0004-637X,
93
, pp.
70
83
.
26.
Siegel
,
R.
, and
Howell
,
J. R.
, 2002,
Thermal Radiation Heat Transfer
, 4th ed.,
Taylor & Francis
,
London
.
27.
Modest
,
F. M.
, 2003,
Radiative Heat Transfer
,
McGraw-Hill
,
New York
.
28.
Kamdem-Tagne
,
H. T.
, and
Baillis
,
D. D.
, 2005, “
Radiative Heat Transfer Using Isotropic Scaling Approximation: Application to Fibrous Medium
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1115
1123
.
29.
Ozisik
,
M. N.
, 1973,
Radiative Transfer and Interactions With Conduction and Convection
,
Wiley
,
New York
.
30.
McKellar
,
H. J.
, and
Box
,
M. A.
, 1981, “
The Scaling Group of the Radiative Transfer Equation
,”
J. Atmos. Sci.
0022-4928,
38
, pp.
1063
1068
.
31.
Lee
,
H.
, and
Buckius
,
R. O.
, 1982, “
Scaling Anisotropic Scattering in Radiation Heat Transfer for a Planar Medium
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
68
75
.
32.
Guo
,
Z.
, and
Maruyama
,
S.
, 1999, “
Scaling Anisotropic Scattering in Radiative Transfer in Three-Dimensional Nonhomogeneous Media
,”
Int. Commun. Heat Mass Transfer
0735-1933,
26
(
7
), pp.
997
1007
.
33.
Heino
,
J.
,
Arridge
,
S.
,
Sikora
,
J.
, and
Somersalo
,
E.
, 2003, “
Anisotropic Effects in Highly Scattering Media
,”
Phys. Rev. E
1063-651X,
68
, pp.
031908
.
34.
Lind
,
A. C.
, and
Greeenberg
,
J. M.
, 1966, “
Electromagnetic Scattering for Obliquely Oriented Cylinders
,”
J. Appl. Phys.
0021-8979,
37
(
8
), pp.
3195
3303
.
35.
Kerker
,
M.
, 1969,
The Scattering of Light and Other Electromagnetic Radiation
,
Academic Press
,
New York
.
36.
Dombrovsky
,
L. A.
, 1996,
Radiation Heat Transfer in Disperse Systems
,
Begell House
,
New York
.
37.
Yamada
,
J.
,
Kurosaki
,
Y.
, and
Take-Uchi
,
M.
, 1992, “
Radiation Transfer in a Fibrous Medium With Fiber Orientation
,”
Developments in Radiation Heat Transfer
, Vol.
203
,
ASME
,
New York
, pp.
63
70
.
38.
Marschall
,
J.
, and
Milos
,
F. S.
, 1997, “
The Calculation of Anisotropic Extinction Coefficients for Radiation Diffusion in Rigid Fibrous Ceramics Insulations
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
3
), pp.
627
634
.
39.
Banner
,
D.
,
Klarsfeld
,
S.
, and
Langlais
,
C.
, 1989, “
Temperature Dependence of the Optical Characteristic of Semitransparent Porous Media
,”
High Temp. - High Press.
0018-1544,
21
, pp.
347
354
.
40.
Hansen
,
J. E.
, and
Travis
,
L.
, 1974, “
Light Scattering in Planetary Atmospheres
,”
Space Sci. Rev.
0038-6308,
16
, pp.
527
610
.
41.
Brewster
,
M. Q.
, 1992,
Thermal Radiative Transfer and Properties
,
Wiley
,
New York
.
You do not currently have access to this content.