This paper reports on experimental and computational investigations into the thermal performance of microelectromechanical systems (MEMS) as a function of the pressure of the surrounding gas. High spatial resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10μm wide, 2.25μm thick, and either 200μm or 400μm long in nitrogen atmospheres with pressures ranging from 0.05 Torr to 625 Torr (6.67 Pa–83.3 kPa). Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared with the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The results indicate that gas-phase heat transfer is significant for devices of this size at ambient pressures but becomes minimal as the pressure is reduced below 5 Torr. The model and experimental results are in qualitative agreement, and better quantitative agreement requires increased accuracy in the geometrical and material property values.

1.
Kim
,
J. -S.
,
Lee
,
S. -W.
,
Jung
,
K. -D.
,
Kim
,
W. -B.
,
Choa
,
S. -H.
, and
Ju
,
B. -K.
, 2008, “
Quality Factor Measurement of Micro Gyroscope Structure According to Vacuum Level and Desired Q-Factor Range Package Method
,”
Microelectron. Reliab.
0026-2714,
48
, pp.
948
952
.
2.
Xuecheng
,
J.
,
Ladabaum
,
I.
,
Degertekin
,
F. L.
,
Calmes
,
S.
, and
Khuri-Yakob
,
B. T.
, 1999, “
Fabrication and Characterization of Surface Micromachined Capacitive Ultrasonic Immersion Transducers
,”
J. Microelectromech. Syst.
1057-7157,
8
(
1
), pp.
100
114
.
3.
Eriksson
,
P.
,
Andersson
,
J. Y.
, and
Stemme
,
G.
, 1997, “
Thermal Characterization of Surface-Micromachined Silicon Nitride Membranes for Thermal Infrared Detectors
,”
J. Microelectromech. Syst.
1057-7157,
6
(
1
), pp.
55
61
.
4.
Nagapriya
,
K. S.
,
Raychaudhuri
,
A. K.
,
Jain
,
V. K.
,
Jalwania
,
C. R.
, and
Kumar
,
V.
, 2003, “
Effect of Ambient on the Thermal Parameters of a Micromachined Bolometer
,”
Appl. Phys. Lett.
0003-6951,
82
(
16
), pp.
2721
2723
.
5.
Gallis
,
M. A.
,
Torczynski
,
J. R.
, and
Rader
,
D. J.
, 2007, “
A Computational Investigation of Noncontinuum Gas-Phase Heat Transfer Between a Heated Microbeam and the Adjacent Ambient Substrate
,”
Sens. Actuators A
,
134
(
1
), pp.
57
68
.
6.
Lee
,
J.
,
Wright
,
T. L.
,
Abel
,
M. R.
,
Sunden
,
E. O.
,
Marchenkov
,
A.
,
Graham
,
S.
, and
King
,
W. P.
, 2007, “
Thermal Conduction From Microcantilever Heaters in Partial Vacuum
,”
J. Appl. Phys.
0021-8979,
101
, p.
014906
.
7.
MEMS Technologies Department
, 2008, “
SUMMiT V™ Five Level Surface Micromachining Technology Design Manual, Version 3.1a
,” Sandia Report No. SAND2008-0659P, Sandia National Laboratories, Albuquerque, NM.
8.
Sniegowski
,
J. J.
, and
de Boer
,
M. P.
, 2000, “
IC-Compatible Polysilicon Surface Micromachining
,”
Annu. Rev. Mater. Sci.
0084-6600,
30
, pp.
299
333
.
9.
Kearney
,
S. P.
,
Phinney
,
L. M.
, and
Baker
,
M. S.
, 2006, “
Spatially Resolved Temperature Mapping of Electrothermal Actuators by Surface Raman Scattering
,”
J. Microelectromech. Syst.
1057-7157,
15
(
2
), pp.
314
321
.
10.
Aspnes
,
D. E.
, and
Studna
,
A. A.
, 1983, “
Dielectric Functions and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb From 1.5 to 6.0 eV
,”
Phys. Rev. B
0163-1829,
27
(
2
), pp.
985
1009
.
11.
Beechem
,
T.
,
Graham
,
S.
,
Kearney
,
S. P.
,
Phinney
,
L. M.
, and
Serrano
,
J. R.
, 2007, “
Simultaneous Mapping of Temperature and Stress in Microdevices Using Micro-Raman Spectroscopy
,”
Rev. Sci. Instrum.
0034-6748,
78
(
6
), p.
061301
.
12.
Bova
,
S. W.
,
Copps
,
K. D.
, and
Newman
,
C. K.
, 2006, “
Calore: A Computational Heat Transfer Program, Volume 1: Theory Manual
,” Sandia Report No. SAND2006, Sandia National Laboratories, Albuquerque, NM.
13.
Calore Development Team
, 2008, “
Calore: A Computational Heat Transfer Program, Volume 2: User Reference Manual, Version 4.6
,” Sandia Report No. SAND2008-0098P, Sandia National Laboratories, Albuquerque, NM.
14.
Torczynski
,
J. R.
,
Wong
,
C. C.
,
Piekos
,
E. S.
,
Gallis
,
M. A.
,
Rader
,
D. J.
, and
Bainbridge
,
B. L.
, 2005, “
Modeling Microscale Heat Transfer Using Calore
,” Sandia Report No. SAND2005-5979, Sandia National Laboratories, Albuquerque, NM.
15.
Phinney
,
L. M.
,
Piekos
,
E. S.
, and
Kuppers
,
J. D.
, 2007, “
Bond Pad Effects on Steady State Thermal Conductivity Measurement Using Suspended Micromachined Test Structures
,” ASME Paper No. IMECE2007-41349.
16.
White
,
F. M.
, 1984,
Heat Transfer
,
Addison-Wesley
,
Reading, MA
.
17.
Phinney
,
L. M.
,
Kuppers
,
J. D.
, and
Clemens
,
R. C.
, 2006, “
Thermal Conductivity Measurements of SUMMiT V Polycrystalline Silicon
,” Sandia Report No. SAND2006-7112, Sandia National Laboratories, Albuquerque, NM.
18.
Torczynski
,
J. R.
,
Gallis
,
M. A.
,
Piekos
,
E. S.
,
Serrano
,
J. R.
,
Phinney
,
L. M.
, and
Gorby
,
A. D.
, 2008, “
Validation of Thermal Models for a Prototypical MEMS Thermal Actuator
,” Sandia Report No. SAND2008-5749, Sandia National Laboratories, Albuquerque, NM.
19.
Saxena
,
S. C.
, and
Joshi
,
R. K.
, 1989,
Thermal Accommodation and Adsorption Coefficients of Gases
(
CINDAS Data Series on Material Properties
Vol.
II-1
),
C. Y.
Ho
, ed.,
Hemisphere
,
New York
.
20.
Trott
,
W. M.
,
Rader
,
D. J.
,
Castañeda
,
J. N.
,
Torczynski
,
J. R.
, and
Gallis
,
M. A.
, 2009, “
Measurement of Gas-Surface Accommodation
,”
Rarefied Gas Dynamics: 26th International Symposium
,
American Institute of Physics
,
Melville, NY
.
You do not currently have access to this content.