The impact of a vortex-generation technique for air-side heat-transfer improvement is experimentally investigated through full-scale wind-tunnel testing of a plain-fin round-tube heat exchanger under dry-surface conditions. Inspired by the formation locomotion of animals in nature, a new vortex generator (VG) array deployed in a “V” is proposed in the present work, aiming to create constructive interference between vortices. The array is composed of two delta-winglet pairs and placed at an attack angle of 10 deg or 30 deg. Its effectiveness is compared with a baseline configuration and two conventional single-pair designs placed at 30 deg, a small pair with half the area of the array and a large pair with the same area as the array. The frontal air velocity considered ranges from 2.3 m/s to 5.5 m/s, corresponding to a Reynolds number range based on the hydraulic diameter of 1400–3400. The experimental results show little impact of the 10 deg array and a moderate heat-transfer improvement of up to 32% for the small pair, both introducing additional pressure loss of approximately 20–40%. For the 30 deg array and the large pair, similar augmentation of 25–55% in air-side heat-transfer coefficient is obtained accompanied by average pressure drop penalties of 90% and 140%, respectively. Performance evaluation using the criteria of the modified area goodness factor and the volume goodness factor indicates the superiority of the heat exchanger enhanced by the 30 deg array among all the investigated VGs. The VG array is found more effective at comparatively low Reynolds numbers, representative of many heating, ventilation, air-conditioning, and refrigeration applications and compact heat-exchanger designs.

1.
Fiebig
,
M.
,
Valencia
,
A.
, and
Mitra
,
N. K.
, 1993, “
Wing-Type Vortex Generators for Fin-and-Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
0894-1777,
7
, pp.
287
295
.
2.
Wu
,
J. M.
, and
Tao
,
W. Q.
, 2007, “
Investigation on Laminar Convection Heat Transfer in Fin-and-Tube Heat Exchanger in Aligned Arrangement With Longitudinal Vortex Generator From the Viewpoint of Field Synergy Principle
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
2609
2617
.
3.
Torii
,
K.
,
Kwak
,
K. M.
, and
Nishino
,
K.
, 2002, “
Heat Transfer Enhancement Accompanying Pressure-Loss Reduction With Winglet-Type Vortex Generators for Fin-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3795
3801
.
4.
Joardar
,
A.
, and
Jacobi
,
A. M.
, 2008, “
Heat Transfer Enhancement by Winglet-Type Vortex Generator Arrays in Compact Plain-Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
0140-7007,
31
, pp.
87
97
.
5.
Biswas
,
G.
,
Deb
,
P.
, and
Biswas
,
P.
, 1994, “
Generation of Longitudinal Streamwise Vortices—A Device for Improving Heat Exchanger Design
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
588
597
.
6.
Leu
,
J. S.
,
Wu
,
Y. H.
, and
Jang
,
J. Y.
, 2004, “
Heat Transfer and Fluid Flow Analysis in Plate-Fin and Tube Heat Exchangers With a Pair of Block Shape Vortex Generators
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4327
4338
.
7.
Webb
,
R. L.
, and
Kim
,
N. -H.
, 2005,
Principles of Enhanced Heat Transfer
,
2nd ed.
,
Taylor & Francis
,
New York
.
8.
Jacobi
,
A. M.
, and
Shah
,
R. K.
, 1995, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid Sci.
0894-1777,
11
, pp.
295
309
.
9.
Fiebig
,
M.
, 1995, “
Embedded Vortices in Internal Flow: Heat Transfer and Pressure Loss Enhancement
,”
Int. J. Heat Fluid Flow
0142-727X,
16
, pp.
376
388
.
10.
Fiebig
,
M.
, 1998, “
Vortices, Generators and Heat Transfer
,”
Chem. Eng. Res. Des.
0263-8762,
76
(
2
), pp.
108
123
.
11.
Elsherbini
,
A.
, and
Jacobi
,
A. M.
, 2002, “
The Thermal-Hydraulic Impact of Delta-Wing Vortex Generators on the Performance of a Plain-Fin-and-Tube Heat Exchanger
,”
HVAC&R Res.
,
8
, pp.
357
370
.
12.
Wang
,
C. C.
,
Chang
,
Y. J.
,
Wei
,
C. S.
, and
Yang
,
B. C.
, 2004, “
A Comparative Study of the Airside Performance of Winglet Vortex Generator and Wavy Fin-and-Tube Heat Exchangers
,”
ASHRAE Trans.
0001-2505,
110
, pp.
53
57
.
13.
Joardar
,
A.
, and
Jacobi
,
A. M.
, 2005, “
Impact of Leading Edge Delta-Wing Vortex Generators on the Thermal Performance of a Flat Tube, Louvered-Fin Compact Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1480
1493
.
14.
Sommers
,
A. D.
, and
Jacobi
,
A. M.
, 2005, “
Air-Side Heat Transfer Enhancement of a Refrigeration Evaporator Using Vortex Generation
,”
Int. J. Refrig.
0140-7007,
28
, pp.
1006
1017
.
15.
Lissaman
,
P. B. S.
, and
Shollenberger
,
C. A.
, 1970, “
Formation Flight of Birds
,”
Science
0036-8075,
168
, pp.
1003
1005
.
16.
Weimerskirch
,
H.
,
Martin
,
J.
,
Clerquin
,
Y.
,
Alexandre
,
P.
, and
Jiraskova
,
S.
, 2001, “
Energy Saving in Flight Formation
,”
Nature (London)
0028-0836,
413
, pp.
697
698
.
17.
Weihs
,
D.
, 1973, “
Hydromechanics of Fish Schooling
,”
Nature (London)
0028-0836,
241
, pp.
290
291
.
18.
Bill
,
R. G.
, and
Herrnkind
,
W. F.
, 1976, “
Drag Reduction by Formation Movement in Spiny Lobsters
,”
Science
0036-8075,
193
, pp.
1146
1148
.
19.
Hou
,
X. G.
,
Siveter
,
D. J.
,
Aldridge
,
R. J.
, and
Siveter
,
D. J.
, 2008, “
Collective Behavior in an Early Cambrian Arthropod
,”
Science
0036-8075,
322
, p.
224
.
20.
Saleh
,
J.
, 2002,
Fluid Flow Handbook
,
1st ed.
,
McGraw-Hill
,
New York
.
21.
Bushnell
,
D. M.
, and
Moore
,
K. J.
, 1991, “
Drag Reduction in Nature
,”
Annu. Rev. Fluid Mech.
0066-4189,
23
, pp.
65
79
.
22.
Liu
,
L.
, and
Jacobi
,
A. M.
, 2009, “
Air-Side Surface Wettability Effects on the Performance of Slit-Fin-and-Tube Heat Exchangers Operating Under Wet-Surface Conditions
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
051802
.
23.
Park
,
Y.
,
Liu
,
L.
, and
Jacobi
,
A. M.
, 2010, “
A Rational Approach for Combining Redundant, Independent Measurements to Minimize Combined Experimental Uncertainty
,”
Exp. Therm. Fluid Sci.
0894-1777, to be published.
24.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
4th ed.
,
Wiley
,
New York
.
25.
Wang
,
C. C.
,
Webb
,
R. L.
, and
Chi
,
K. Y.
, 2000, “
Data Reduction for Air-Side Performance of Fin-and-Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
0894-1777,
21
, pp.
218
226
.
26.
Taylor
,
B. N.
, and
Kuyatt
,
C. E.
, 1994, “
Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results
,” National Institute of Standards and Technology Technical Note 1297.
27.
Ferrouillat
,
S.
,
Tochon
,
P.
,
Garnier
,
C.
, and
Peerhossaini
,
H.
, 2006, “
Intensification of Heat-Transfer and Mixing in Multifunctional Heat Exchangers by Artificially Generated Streamwise Vorticity
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
1820
1829
.
28.
Joardar
,
A.
, and
Jacobi
,
A. M.
, 2007, “
A Numerical Study of Flow and Heat Transfer Enhancement Using an Array of Delta-Winglet Vortex Generators in a Fin-and-Tube Heat Exchanger
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1156
1167
.
29.
Chu
,
P.
,
He
,
Y. L.
, and
Tao
,
W. Q.
, 2009, “
Three-Dimensional Numerical Study of Flow and Heat Transfer Enhancement Using Vortex Generators in Fin-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
091903
.
You do not currently have access to this content.