A numerical analysis of forced convective heat transfer from an elliptical pin fin heat sink with and without metal foam inserts is conducted using three-dimensional conjugate heat transfer model. The pin fin heat sink model consists of six elliptical pin rows with 3 mm major diameter, 2 mm minor diameter, and 20 mm height. The Darcy–Brinkman–Forchheimer and classical Navier–Stokes equations, together with corresponding energy equations are used in the numerical analysis of flow field and heat transfer in the heat sink with and without metal foam inserts, respectively. A finite volume code with point implicit Gauss–Seidel solver in conjunction with algebraic multigrid method is used to solve the governing equations. The code is validated by comparing the numerical results with available experimental results for a pin fin heat sink without porous metal foam insert. Different metallic foams with various porosities and permeabilities are used in the numerical analysis. The effects of air flow Reynolds number and metal foam porosity and permeability on the overall Nusselt number, pressure drop, and the efficiency of heat sink are investigated. The results indicate that structural properties of metal foam insert can significantly influence on both flow and heat transfer in a pin fin heat sink. The Nusselt number is shown to increase more than 400% in some cases with a decrease in porosity and an increase in Reynolds number. However, the pressure drop increases with decreasing permeability and increasing Reynolds number.

1.
Khan
,
W. A.
, 2004, “
Modeling of Fluid Flow and Heat Transfer for Optimization of Pin Fin Heat Sinks
,” Ph.D. thesis, Department of Mechanical Engineering, Faculty of Engineering, Waterloo, ON, Canada.
2.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Altemani
,
C. A. C.
, 1980, “
Experiments on Inline Pin Fin Arrays and Performance Comparison With Staggered Arrays
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
44
50
.
3.
Sparrow
,
E. M.
, and
Kang
,
S. S.
, 1985, “
Longitudinally Finned Cross Flow Tube Banks and Their Heat Transfer and Pressure Drop Characteristics
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
339
350
.
4.
Constans
,
E. W.
,
Belegundu
,
A. D.
, and
Kulkarni
,
A. K.
, 1994, “
Optimization of a Pin Fin Sink: a Design Tool
,”
CAFJCAD Application to Electronic Packaging
, ASME EEP-Vol.
9
, pp.
25
32
.
5.
Shaukatullah
,
H.
,
Storr
,
W. R.
,
Hansen
,
B. J.
, and
Gaynes
,
M. A.
, 1996, “
Design and Optimization of Pin Fin Heat Sinks for Low Velocity Applications
,”
Proceedings of the 12th IEEE SEMI-THERM Symposium
, Austin, TX, pp.
151
163
.
6.
Biber
,
C. R.
, and
Belady
,
C. L.
, 1997, “
Pressure Drop Predictions for Heat Sinks: What is the Best Method?
Advances in Electronic Packaging
, ASME EEP-Vol.
19-2
, pp.
1829
1835
.
7.
Li
,
Q.
,
Chen
,
Zh.
,
Flechtner
,
U.
, and
Warnecke
,
H. J.
, 1998, “
Heat Transfer and Pressure Drop Characteristics in Rectangular Channels With Elliptic Pin Fins
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
245
250
.
8.
Dvinsky
,
A.
,
Bar-Cohen
,
A.
, and
Strelets
,
M.
, 2000,”
Thermofluid Analysis of Staggered and Inline Pin Fin Heat Sinks
,”
Proceedings of the Seventh IEEE Inter Society Conference on Thermal Phenomena (ITHERM)
, Las Vegas, NV, pp.
157
164
.
9.
Jonsson
,
H.
, and
Moshfegh
,
B.
, 2001, “
Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks–Influence of Flow By-Pass
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
, pp.
142
149
.
10.
Sara
,
O. N.
,
Pekdemir
,
T.
,
Yapici
,
S.
, and
Yilmaz
,
M.
, 2001, “
Heat Transfer Enhancement in a Channel With Perforated Rectangular Blocks
,”
Int. J. Heat Fluid Flow
0142-727X,
22
, pp.
509
518
.
11.
Jonsson
,
H.
, and
Moshfegh
,
B.
, 2002, “
Enhancement of the Cooling Performance of Circular Pin Fin Heat Sinks Under Bypass Conditions
,”
Proceedings of the Eighth IEEE Inter Society Conference on Thermal Phenomena (ITHERM)
, San Diego, CA, pp.
425
432
.
12.
Saha
,
A. K.
, and
Acharya
,
S.
, 2003, “
Parametric Study of Unsteady Flow and Heat Transfer in a Pin Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3815
3830
.
13.
Kobus
,
C. J.
, and
Oshio
,
T.
, 2005, “
Development of a Theoretical Model for Predicting the Thermal Performance Characteristics of a Vertical Pin Fin Array Heat Sink Under Combined Forced and Natural Convection With Impinging Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1053
1063
.
14.
Peles
,
Y.
,
Kosar
,
A.
,
Mishra
,
C.
,
Kuo
,
C. J.
, and
Schneider
,
B.
, 2005, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3615
3627
.
15.
Sahiti
,
N.
,
Lemouedda
,
A.
,
Stojkovic
,
D.
,
Durst
,
F.
, and
Franz
,
E.
, 2006, “
Performance Comparison of Pin Fin In-Duct Flow Arrays With Various Pin Cross Section
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
1176
1192
.
16.
Naphon
,
P.
, and
Sookkasem
,
A.
, 2007, “
Investigation on Heat Transfer Characteristics of Tapered Cylinder Pin Fin Heat Sinks
,”
Energy Convers. Manage.
0196-8904,
48
, pp.
2671
2679
.
17.
Yang
,
K. S.
,
Chu
,
W. H.
,
Chen
,
I. Y.
, and
Wang
,
C. C.
, 2007, “
A Comparative Study of the Airside Performance of Heat Sinks Having Pin Fin Configurations
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4661
4667
.
18.
Sahin
,
B.
, and
Demir
,
A.
, 2008, “
Performance Analysis of a Heat Exchanger Having Perforated Square Fins
,”
Appl. Therm. Eng.
1359-4311,
28
, pp.
621
632
.
19.
Nield
,
D. A.
, and
Bejan
,
A.
, 1992,
Convection in Porous Media
,
2nd ed.
,
Springer
,
New York
.
20.
Bastawros
,
A. F.
, 1998, “
Effectiveness of Open-Cell Metallic Foams for High Power Electronic Cooling
,” ASME, New York, Vol. HTD-361-3/PID-3, pp.
211
217
.
21.
Bastawros
,
A. F.
,
Evans
,
A. G.
, and
Stone
,
H. A.
, 1998, “
Evaluation of Cellular Metal Heat Transfer Media
,” Harvard University Report No. MECH 325, Cambridge, MA.
22.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
, 2000, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchangers
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
572
578
.
23.
Kim
,
S. Y.
,
Koo
,
J. M.
, and
Kuznetsov
,
A. V.
, 2001, “
Effect of Anisotropy in Permeability and Effective Thermal Conductivity on Thermal Performance of an Al-Foam Heat Sink
,”
Numer. Heat Transfer, Part A
1040-7782,
40
(
1
), pp.
21
36
.
24.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
, 2002, “
Finned Metal Foam Heat Sinks for Electronic Cooling in Forced Convection
,”
ASME J. Electron. Packag.
1043-7398,
124
(
3
), pp.
155
163
.
25.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
, 2003, “
Thermal Performance of Aluminum-Foam Heat Sinks by Forced Air Cooling
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
), pp.
262
267
.
26.
Tadrist
,
L.
,
Miscevic
,
M.
,
Rahli
,
O.
, and
Topin
,
F.
, 2004, “
About the Use of Fibrous Materials in Compact Heat Exchangers
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
193
199
.
27.
Hernández
,
A. R. A.
, 2005, “
Combined Flow and Heat Transfer Characterization of Open Cell Aluminum Foams
,” M.S. thesis, University of Puerto Rico, Mayagüez Campus.
28.
Mahdi
,
H.
,
Lopez
,
P.
,
Fuentes
,
A. A.
, and
Jones
,
R.
, 2006, “
Thermal Performance of Aluminum-Foam CPU Heat Exchangers
,”
Int. J. Energy Res.
0363-907X,
30
, pp.
851
860
.
29.
Shih
,
W. H.
,
Chiu
,
W. C.
, and
Hsieh
,
W. H.
, 2006, “
Height Effect on Heat Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
ASME J. Heat Transfer
0022-1481,
128
(
6
), pp.
530
537
.
30.
Layeghi
,
M.
, 2008, “
Numerical Analysis of Wooden Porous Media Effects on Heat Transfer From a Staggered Tube Bundle
,”
ASME J. Heat Transfer
0022-1481,
130
(
1
), p.
014501
.
31.
Zukauskas
,
A.
, 1987, “
Heat Transfer From Tubes in Crossflow
,”
Advances in Heat Transfer
,
J. P.
Hartnett
and
Th. F.
Irvine
, eds.,
Academic
,
New York
, Vol.
18
.
32.
Barth
,
T. J.
, and
Jesperson
,
D.
, 1989, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,” AIAA Paper No. 89-0366.
33.
Leonard
,
B. P.
, 1995, “
Order of Accuracy of Quick and Related Convection–Diffusion Schemes
,”
Appl. Math. Model.
0307-904X,
19
, pp.
640
.
34.
Mathur
,
S.
, and
Murthy
,
J. Y.
, 1997, “
A Pressure Based Method for Unstructured Meshes
,”
Numer. Heat Transfer, Part B
1040-7790,
31
(
2
), pp.
195
215
.
35.
Van Doormall
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the Simple Method for Predicting Incompressible Fluid Flow
,”
Numer. Heat Transfer, Part A
1040-7782,
7
, pp.
147
163
.
36.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
Numerical Study of Turbulent Flow Past and Airfoil With Trailing Edge Separation
,”
AIAA J.
0001-1452,
21
(
11
), pp.
1525
1532
.
37.
Kim
,
S. J.
, and
Jang
,
S. P.
, 2002, “
Effects of the Darcy Number, Prandtl Number, and the Reynolds Number on Local Thermal Non-Equilibrium
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3885
3896
.
You do not currently have access to this content.