A nonintrusive measurement technique is presented numerically for simultaneous measurement of three-dimensional (3D) soot temperature and volume fraction fields in the axisymmetric or asymmetric flames with charge-coupled device (CCD) cameras. CCD cameras were introduced to capture the flame images for obtaining the line-of-sight radiation intensities. The distributions of local emission source under two wavelengths can be deduced through solving the reconstruction matrix equation by the least-square QR decomposition method from the knowledge of the line-of-sight radiation intensities of the flames. The two-color distributions of the local emission source were used to retrieve the soot temperature and volume fraction distributions. The effects of the discrete ray number of CCD cameras, the number of CCD cameras, and the system signal-to-noise ratio (SNR) on the measurement were investigated. The results show that for accurate measurement of soot volume fraction field, the CCD cameras number should not be less than four and the system SNR can be as low as 54 dB. The proposed technique can be capable for reconstructing the 3D soot temperature and volume fraction fields in both axisymmetric and asymmetric flames well.

1.
Hall
,
R. J.
, and
Bonczyk
,
P. A.
, 1990, “
Sooting Flame Thermometry Using Emission/Absorption Tomography
,”
Appl. Opt.
0003-6935,
29
, pp.
4590
4598
.
2.
Greenberg
,
P. S.
, and
Ku
,
J. C.
, 1997, “
Soot Volume Fraction Imaging
,”
Appl. Opt.
0003-6935,
36
, pp.
5514
5522
.
3.
Greenberg
,
P. S.
, and
Ku
,
J. C.
, 1997, “
Soot Volume Fraction Maps for Normal and Reduced Gravity Laminar Acetylene Jet Diffusion Flames
,”
Combust. Flame
0010-2180,
108
, pp.
227
230
.
4.
De Iuliis
,
S.
,
Barbini
,
M.
,
Benecchi
,
S.
,
Cignoli
,
F.
, and
Zizak
,
G.
, 1998, “
Determination of the Soot Volume Fraction in an Ethylene Diffusion Flame by Multiwavelength Analysis of Soot Radiation
,”
Combust. Flame
0010-2180,
115
, pp.
253
261
.
5.
Cignoli
,
F.
,
De Iuliis
,
S.
,
Manta
,
V.
, and
Zizak
,
G.
, 2001, “
Two-Dimensional Two-Wavelength Emission Technique for Soot Diagnostics
,”
Appl. Opt.
0003-6935,
40
, pp.
5370
5378
.
6.
De Iuliis
,
S.
,
Migliorini
,
F.
,
Cignoli
,
F.
, and
Zizak
,
G.
, 2007, “
2D Soot Volume Fraction Imaging in an Ethylene Diffusion Flame by Two-Color Laser-Induced Incandescence (2C-LII) Technique and Comparison With Results From Other Optical Diagnostics
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
869
876
.
7.
Snelling
,
D. R.
,
Thomson
,
K. A.
,
Smallwood
,
G. J.
, and
Gülder
,
Ö. L.
, 1999, “
Two-Dimensional Imaging of Soot Volume Fraction in Laminar Diffusion Flames
,”
Appl. Opt.
0003-6935,
38
, pp.
2478
2485
.
8.
Snelling
,
D. R.
,
Thomson
,
K. A.
,
Smallwood
,
G. J.
,
Gülder
,
Ö. L.
,
Weckman
,
E. J.
, and
Fraser
,
R. A.
, 2002, “
Spectrally Resolved Measurement of Flame Radiation to Determine Soot Temperature and Concentration
,”
AIAA J.
0001-1452,
40
, pp.
1789
1795
.
9.
Thomson
,
K. A.
,
Gülder
,
Ö. L.
,
Weckman
,
E. J.
,
Fraser
,
R. A.
,
Smallwood
,
G. J.
, and
Snelling
,
D. R.
, 2005, “
Soot Concentration and Temperature Measurements in Co-annular, Nonpremixed CH4/Air Laminar Flames at Pressures up to 4 MPa
,”
Combust. Flame
0010-2180,
140
, pp.
222
232
.
10.
Thomson
,
K. A.
,
Johnson
,
M. R.
,
Snelling
,
D. R.
, and
Smallwood
,
G. J.
, 2008, “
Diffuse-Light Two-Dimensional Line-of-Sight Attenuation for Soot Concentration Measurements
,”
Appl. Opt.
0003-6935,
47
, pp.
694
703
.
11.
Xu
,
Y.
, and
Lee
,
C. F.
, 2006, “
Forward-Illumination Light-Extinction Technique for Soot Measurement
,”
Appl. Opt.
0003-6935,
45
, pp.
2046
2057
.
12.
Liu
,
L. H.
,
Tan
,
H. P.
, and
Yu
,
Q. Z.
, 2000, “
Inverse Radiation Problem in Axisymmetric Free Flames
,”
J. Thermophys. Heat Transfer
0887-8722,
14
, pp,
450
452
.
13.
Liu
,
L. H.
, and
Jiang
,
J.
, 2001, “
Inverse Radiation Problem for Reconstruction of Temperature Profile in Axisymmetric Free Flames
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
70
, pp.
207
215
.
14.
Liu
,
L. H.
, and
Li
,
B. X.
, 2002, “
Inverse Radiation Problem of Axisymmetric Turbulent Sooting Free Flame
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
75
, pp.
481
491
.
15.
Liu
,
L. H.
,
Tan
,
H. P.
, and
Li
,
B. X.
, 2002, “
Influence of Turbulent Fluctuation on Reconstruction of Temperature Profile in Axisymmetric Free Flames
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
, pp.
641
648
.
16.
Ai
,
Y. H.
, and
Zhou
,
H. C.
, 2005, “
Simulation on Simultaneous Estimation of Non-uniform Temperature and Soot Volume Fraction Distributions in Axisymmetric Sooting Flames
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
91
, pp.
11
26
.
17.
Ayrancı
,
I.
,
Vaillon
,
R.
,
Selçuk
,
N.
,
André
,
F.
, and
Escudié
,
D.
, 2007, “
Determination of Soot Temperature, Volume Fraction and Refractive Index From Flame Emission Spectrometry
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
104
, pp.
266
276
.
18.
Ayrancı
,
I.
,
Vaillon
,
R.
, and
Selçuk
,
N.
, 2008, “
Near-Infrared Emission Spectrometry Measurements for Nonintrusive Soot Diagnostics in Flames
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
109
, pp.
349
361
.
19.
Liu
,
L. H.
, and
Man
,
G. L.
, 2003, “
Reconstruction of Time-Averaged Temperature of Non-Axisymmetric Turbulent Unconfined Sooting Flame by Inverse Radiation Analysis
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
78
, pp.
139
149
.
20.
Huang
,
Q. X.
,
Wang
,
F.
,
Liu
,
D.
,
Ma
,
Z. Y.
,
Yan
,
J. H.
,
Chi
,
Y.
, and
Cen
,
K. F.
, 2009, “
Reconstruction of Soot Temperature and Volume Fraction Profiles of an Asymmetric Flame Using Stereoscopic Tomography
,”
Combust. Flame
0010-2180,
156
, pp.
565
573
.
21.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
San Diego, CA
.
22.
Chang
,
H.
, and
Charalampopoulos
,
T. T.
, 1990, “
Determination of the Wavelength Dependence of Refractive Indices of Flame Soot
,”
Proc. R. Soc. London, Ser. A
0950-1207,
430
, pp.
577
591
.
23.
Liu
,
D.
,
Wang
,
F.
,
Yan
,
J. H.
,
Huang
,
Q. X.
,
Chi
,
Y.
, and
Cen
,
K. F.
, 2008, “
Inverse Radiation Problem of Temperature Field in Three-Dimensional Rectangular Enclosure Containing Inhomogeneous, Anisotropically Scattering Media
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3434
3441
.
24.
Liu
,
D.
,
Wang
,
F.
,
Cen
,
K. F.
,
Yan
,
J. H.
,
Huang
,
Q. X.
, and
Chi
,
Y.
, 2008, “
Noncontact Temperature Measurement by Means of CCD Cameras in a Participating Medium
,”
Opt. Lett.
0146-9592,
33
, pp.
422
424
.
25.
Wang
,
F.
,
Liu
,
D.
,
Cen
,
K. F.
,
Yan
,
J. H.
,
Huang
,
Q. X.
, and
Chi
,
Y.
, 2008, “
Efficient Inverse Radiation Analysis of Temperature Distribution in Participating Medium Based on Backward Monte Carlo Method
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
109
, pp.
2171
2181
.
26.
Lanczons
,
C.
, 1950, “
An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators
,”
J. Res. Natl. Bur. Stand.
0160-1741,
45
, pp.
255
281
.
27.
Paige
,
C. C.
, and
Saunders
,
M. A.
, 1982, “
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
,”
AMC Trans. Math. Softw.
0098-3500,
8
, pp.
43
71
.
28.
Paige
,
C. C.
, and
Saunders
,
M. A.
, 1982, “
LSQR: Sparse Linear Equations and Least Squares Problems
,”
AMC Trans. Math. Softw.
0098-3500,
8
, pp.
195
209
.
You do not currently have access to this content.