A self-contained, small-volume liquid cooling system for thin form-factor electronic equipment (e.g., blade server modules) is demonstrated experimentally in this paper. A reciprocating water flow loop absorbs heat using mesh-type microchannel cold plates and spreads it periodically to a larger area. From there, the thermal energy is interchanged via large area, low pressure drop cold plates with a secondary heat transfer loop (air or liquid). Four phase-shifted piston pumps create either a linearly or radially oscillating fluid flow in the frequency range of 0.5–3 Hz. The tidal displacement of the pumps covers 42–120% of the fluid volume, and, therefore, an average flow rate range of 100–800 ml/min is tested. Three different absorber mesh designs are tested. Thermal and fluidic characteristics are presented in a time-resolved and a time-averaged manner. For a fluid pump power of 1 W, a waste heat flux of 180W/cm2(ΔT=67K) could be dissipated from a 3.5cm2 chip. A linear oscillation flow pattern is advantageous over a radial one because of the more efficient heat removal from the chip and lower hydraulic losses. The optimum microchannel mesh density is determined as a combination of low pump losses and high heat transfer rates.

1.
IBM STG Field Skills Education Team
, 2009, “
IBM BladeCentre and System X Reference Sheet
,” http://www.redbooks.ibm.com/xref/usxref.pdfhttp://www.redbooks.ibm.com/xref/usxref.pdf
2.
Desai
,
D. M.
,
Bradicich
,
T. M.
,
Champion
,
D.
,
Holland
,
W. G.
, and
Kreuz
,
B. M.
, 2005, “
BladeCenter System Overview
,”
IBM J. Res. Dev.
0018-8646,
49
(
6
), pp.
809
821
.
3.
Crippen
,
M. J.
,
Alo
,
R. K.
,
Champion
,
D.
,
Clemo
,
R. M.
,
Grosser
,
C. M.
,
Gruendler
,
N. J.
,
Mansuria
,
M. S.
,
Matteson
,
J. A.
,
Miller
,
M. S.
, and
Trumbo
,
B. A.
, 2005, “
BladeCenter Packaging, Power, and Cooling
,”
IBM J. Res. Dev.
0018-8646,
49
(
6
), pp.
887
904
.
4.
Bianchini
,
R.
, and
Rajamony
,
R.
, 2004, “
Power and Energy Management for Server Systems
,”
IEEE Trans. Comput.
0018-9340,
37
(
11
), pp.
68
76
.
5.
Brey
,
T.
,
Bigelow
,
B. E.
,
Bolan
,
J. E.
,
Cheselka
,
H.
,
Dayar
,
Z.
,
Franke
,
J. M.
,
Johnson
,
D. E.
,
Kantesaria
,
R. N.
,
Klodnicki
,
E. J.
,
Kochar
,
S.
,
Lardinois
,
S. M.
,
Morrell
,
C. A.
,
Rollins
,
M. S.
,
Wolford
,
R. R.
, and
Woodham
,
D. R.
, 2005, “
BladeCenter Chassis Management
,”
IBM J. Res. Dev.
0018-8646,
49
(
6
), pp.
941
961
.
6.
Patel
,
P.
,
Hughes
,
J.
,
Herman
,
B.
,
Cases
,
M.
,
de Araujo
,
D. N.
, and
Pham
,
N.
, 2004, “
IBM Bladecenter System Electrical Packaging Design Challenges
,”
Proceedings of the IEEE 13th Topical Meeting on Electrical Performance of Electronic Packaging
, Portland, OR, pp.
11
14
.
7.
Sauciuc
,
I.
,
Chrysler
,
G.
,
Mahajan
,
R.
, and
Szleper
,
M.
, 2003, “
Air-Cooling Extension—Performance Limits for Processor Cooling Applications
,”
Proceedings of the SEMITherm
, San Jose, CA, pp.
74
81
.
8.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
2
(
5
), pp.
126
129
.
9.
Vafai
,
K.
, and
Zhu
,
I.
, 1999, “
Analysis of Two-Layered Microchannel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
12
), pp.
2287
2297
.
10.
Brunschwiler
,
T.
,
Rothuizen
,
H.
,
Fabbri
,
M.
,
Fabbri
,
M.
,
Kloter
,
U.
,
Michel
,
B.
,
Bezama
,
R. J.
, and
Natarajan
,
G.
, 2006, “
Direct Liquid Jet-Impingement Cooling With Micron-Sized Nozzle Array and Distributed Return Architecture
,”
Proceedings of the Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, pp.
196
203
.
11.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
LaBianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R.
,
Bezama
,
R.
,
Marston
,
K.
, and
Schmidt
,
R.
, 2007, “
High Performance and Sub-Ambient Silicon Microchannel Cooling
,”
ASME J. Heat Transfer
0022-1481,
129
(
8
), pp.
1046
1051
.
12.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Joshi
,
Y. K.
, 2005, “
Single-Phase Liquid Cooled Microchannel Heat Sink for Electronic Packages
,”
Appl. Therm. Eng.
1359-4311,
25
(
10
), pp.
1472
1487
.
13.
Siegel
,
R.
, and
Perlmutter
,
M.
, 1981, “
Heat Transfer for Pulsating Laminar Duct Flow
,”
ASME J. Heat Transfer
0022-1481,
84
, pp.
111
122
.
14.
Kurzweg
,
U. H.
, and
de Zhao
,
L.
, 1984, “
Heat Transfer by High-Frequency Oscillations: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities
,”
Phys. Fluids
1070-6631,
27
(
11
), pp.
2624
2627
.
15.
Cooper
,
W. L.
,
Nee
,
V. W.
, and
Yang
,
K. T.
, 1994, “
An Experimental Investigation of Convective Heat Transfer From the Heated Floor of a Rectangular Duct to a Low Frequency, Large Tidal Displacement Oscillatory Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
4
), pp.
581
592
.
16.
Lia
,
Q. D.
,
Yang
,
K. T.
, and
Nee
,
V. W.
, 1995, “
Enhanced Microprocessor Chip Cooling by Channeled Zero-Mean Oscillatory Air Flow
,”
Proceedings of the INTERpack ‘95
, Lahaina, HI, pp.
789
794
.
17.
Sert
,
C.
, and
Beskok
,
A.
, 2002, “
Oscillatory Flow Forced Convection in Micro Heat Spreaders
,”
Numer. Heat Transfer, Part A
1040-7782,
42
, pp.
685
705
.
18.
Brunschwiler
,
T.
,
Smith
,
B.
,
Ruetsche
,
E.
, and
Michel
,
B.
, 2009, “
Toward Zero-Emission Data Centers Through Direct Reuse of Thermal Energy
,”
IBM J. Res. Dev.
0018-8646,
53
(
3
), pp.
11:1
11:13
.
19.
Wälchli
,
R.
,
Linderman
,
R.
,
Brunschwiler
,
T.
,
Kloter
,
U.
,
Rothuizen
,
H.
,
Bieri
,
N.
,
Poulikakos
,
D.
, and
Michel
,
B.
, 2008, “
Radially Oscillating Flow Hybrid Cooling System for Low Profile Electronics Applications
,”
Proceedings of the SEMITherm24
, San Jose, CA, pp.
143
149
.
20.
Brunschwiler
,
T. J.
,
Kloter
,
U.
,
Linderman
,
R.
,
Michel
,
B.
, and
Rothuizen
,
H.
, 2006, U.S. Patent No. 20070017659A1.
21.
Jillek
,
W.
, and
Keller
,
G.
, 2003,
Handbuch der Leiterplattentechnik-Band 4
,
E. G. L.
Verlag
, eds.,
Eugen G. Leuze Verlag
,
Bad Salgau, Germany
, pp.
733
755
.
22.
Schulz-Harder
,
J.
, 2006, “
Efficient Cooling of Power Electronics
,”
Proceedings of the PCIM Conference
, Shanghai, pp.
208
212
.
23.
Wälchli
,
R.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
, “
Combined Local Microchannel-Scale CFD Modeling and Global Chip Scale Network Modeling for Electronics Cooling Design
,”
Int. J. Heat Mass Transfer
0017-9310, accepted.
24.
Kurzweg
,
U. H.
,
Lindgren
,
E. R.
, and
Lothrop
,
B.
, 1989, “
Onset of Turbulence in Oscillating Flow at Low Womersley Number
,”
Phys. Fluids A
0899-8213,
1
(
12
), pp.
1972
1975
.
25.
Sergeev
,
S. I.
, 1966, “
Fluid Oscillations in Pipes at Moderate Reynolds Numbers
,”
Fluid Dyn.
0015-4628,
1
, pp.
121
122
.
26.
Hino
,
M.
,
Sawamoto
,
M.
, and
Takasu
,
S.
, 1976, “
Experiments on Transition to Turbulence in an Oscillating Pipe Flow
,”
J. Fluid Mech.
0022-1120,
75
, pp.
193
207
.
27.
Merkli
,
P.
, and
Thomann
,
H.
, 1975, “
Transition to Turbulence in Oscillating Pipe Flow
,”
J. Fluid Mech.
0022-1120,
68
, pp.
567
575
.
28.
Zhao
,
T.
, and
Cheng
,
P.
, 1995, “
A Numerical Solution of Laminar Forced Convection in a Pipe Subjected to a Reciprocating Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
16
), pp.
3011
3022
.
29.
Richardson
,
E. G.
, and
Tyler
,
E.
, 1929, “
The Transverse Velocity Gradient Near the Mouths of Pipes in Which an Alternating or Continuous Flow of Air Is Established
,”
Proc. Phys. Soc. London
0370-1328,
42
(
1
), pp.
1
15
.
30.
Incropera
,
F. P.
, and
De Witt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
New York
.
You do not currently have access to this content.