Condensation pressure drops and heat transfer coefficients for refrigerant R134a flowing through rectangular microchannels with hydraulic diameters ranging from 100μm to 200μm are measured in small quality increments. The channels are fabricated on a copper substrate by electroforming copper onto a mask patterned by X-ray lithography and sealed by diffusion bonding. Subcooled liquid is electrically heated to the desired quality, followed by condensation in the test section. Downstream of the test section, another electric heater is used to heat the refrigerant to a superheated state. Energy balances on the preheaters and postheaters establish the refrigerant inlet and outlet states at the test section. Water at a high flow rate serves as the test-section coolant to ensure that the condensation side presents the governing thermal resistance. Heat transfer coefficients are measured for mass fluxes ranging from 200kg/m2s to 800kg/m2s for 0< quality <1 at several different saturation temperatures. Conjugate heat transfer analyses are conducted in conjunction with local pressure drop profiles to obtain accurate driving temperature differences and heat transfer coefficients. The effects of quality, mass flux, and saturation temperature on condensation pressure drops and heat transfer coefficients are illustrated through these experiments.

1.
Coleman
,
J. W.
, and
Garimella
,
S.
, 1999, “
Characterization of Two-Phase Flow Patterns in Small Diameter Round and Rectangular Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
15
), pp.
2869
2881
.
2.
Coleman
,
J. W.
, and
Garimella
,
S.
, 2000, “
Two-Phase Flow Regime Transitions in Microchannel Tubes: The Effect of Hydraulic Diameter
,” ASME Paper No. HTD-366.
3.
Coleman
,
J. W.
, and
Garimella
,
S.
, 2003, “
Two-Phase Flow Regimes in Round, Square and Rectangular Tubes During Condensation of Refrigerant R134a
,”
Int. J. Refrig.
0140-7007,
26
(
1
), pp.
117
128
.
4.
Garimella
,
S.
,
Agarwal
,
A.
, and
Killion
,
J. D.
, 2005, “
Condensation Pressure Drop in Circular Microchannels
,”
Heat Transfer Eng.
0145-7632,
26
(
3
), pp.
28
35
.
5.
Garimella
,
S.
,
Killion
,
J. D.
, and
Coleman
,
J. W.
, 2002, “
An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Circular Microchannels
,”
ASME J. Fluids Eng.
0098-2202,
124
(
1
), pp.
205
214
.
6.
Garimella
,
S.
,
Killion
,
J. D.
, and
Coleman
,
J. W.
, 2003, “
An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Noncircular Microchannels
,”
ASME J. Fluids Eng.
0098-2202,
125
(
5
), pp.
887
894
.
7.
Garimella
,
S.
,
Agarwal
,
A.
, and
Coleman
,
J. W.
, 2003, “
Two-Phase Pressure Drops in the Annular Flow Regime in Circular Microchannels
,”
Proceedings of the 21st IIR International Congress of Refrigeration
, Washington, DC, Paper No. ICR0360.
8.
Agarwal
,
A.
, and
Garimella
,
S.
, 2006, “
Modeling of Pressure Drop During Condensation in Circular and Non-Circular Microchannels
,” ASME Paper No. IMECE2006-14672.
9.
Garimella
,
S.
, and
Bandhauer
,
T. M.
, 2001, “
Measurement of Condensation Heat Transfer Coefficients in Microchannel Tubes
,”
Proceedings of the 2001 ASME International Mechanical Engineering Congress and Exposition
, Vol.
369
,
ASME
,
New York
, pp.
243
249
.
10.
Bandhauer
,
T. M.
,
Agarwal
,
A.
, and
Garimella
,
S.
, 2006, “
Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Microchannels
,”
ASME J. Heat Transfer
0022-1481,
128
(
10
), pp.
1050
1059
.
11.
Agarwal
,
A.
,
Bandhauer
,
T. M.
, and
Garimella
,
S.
, 2007, “
Heat Transfer Model for Condensation in Non-Circular Microchannels
,” ASME Paper No. ICNMM2007–30223.
12.
Kandlikar
,
S.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
, 2005,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
New York
.
13.
Carpenter
,
F. G.
, and
Colburn
,
A. P.
, 1951, “
The Effect of Vapor Velocity on Condensation Inside Tubes
,”
General Discussion of Heat Transfer
,
Institute of Mechanical Engineers and ASME
, pp.
20
26
.
14.
Soliman
,
H. M.
,
Schuster
,
J. R.
, and
Berenson
,
P. J.
, 1968, “
A General Heat Transfer Correlation for Annular Flow Condensation
,”
ASME J. Heat Transfer
0022-1481,
90
(
2
), pp.
267
276
.
15.
Traviss
,
D. P.
,
Rohsenow
,
W. M.
, and
Baron
,
A. B.
, 1973, “
Forced-Convection Condensation inside Tubes: A Heat Transfer Equation for Condenser Design
,”
ASHRAE Trans.
0001-2505,
79
(
1
), pp.
157
165
.
16.
Chen
,
S. L.
,
Gerner
,
F. M.
, and
Tien
,
C. L.
, 1987, “
General Film Condensation Correlations
,”
Exp. Heat Transfer
0891-6152,
1
(
2
), pp.
93
107
.
17.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
, 1949, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
0360-7275,
45
(
1
), pp.
39
45
.
18.
Friedel
,
L.
, 1979, “
Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two Phase Pipe Flow
,”
Proceedings of the European Two Phase Flow Group Meeting
, Ispra, Italy, Paper No. E2.
19.
Shah
,
M. M.
, 1979, “
A General Correlation for Heat Transfer During Film Condensation inside Pipes
,”
Int. J. Heat Mass Transfer
0017-9310,
22
(
4
), pp.
547
556
.
20.
Dobson
,
M. K.
, and
Chato
,
J. C.
, 1998, “
Condensation in Smooth Horizontal Tubes
,”
ASME J. Heat Transfer
0022-1481,
120
(
1
), pp.
193
213
.
21.
Cavallini
,
A.
,
Censi
,
G.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
, 2002, “
Condensation of Halogenated Refrigerants Inside Smooth Tubes
,”
HVAC&R Res.
,
8
(
4
), pp.
429
451
.
22.
Thome
,
J. R.
,
El Hajal
,
J.
, and
Cavallini
,
A.
, 2003, “
Condensation in Horizontal Tubes, Part 2: New Heat Transfer Model Based on Flow Regimes
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
18
), pp.
3365
3387
.
23.
Soliman
,
H. M.
, 1986, “
Mist-Annular Transition During Condensation and Its Influence on the Heat Transfer Mechanism
,”
Int. J. Multiphase Flow
0301-9322,
12
(
2
), pp.
277
288
.
24.
Webb
,
R. L.
, and
Ermis
,
K.
, 2001, “
Effect of Hydraulic Diameter on Condensation of R-134a in Flat, Extruded Aluminum Tubes
,”
J. Enhanced Heat Transfer
1065-5131,
8
(
2
), pp.
77
90
.
25.
Yang
,
C. -Y.
, and
Webb
,
R. L.
, 1996, “
Friction Pressure Drop of R-12 in Small Hydraulic Diameter Extruded Aluminum Tubes With and Without Micro-Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
4
), pp.
801
809
.
26.
Yang
,
C. -Y.
, and
Webb
,
R. L.
, 1996, “
Condensation of R-12 in Small Hydraulic Diameter Extruded Aluminum Tubes With and Without Micro-Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
4
), pp.
791
800
.
27.
Yang
,
C. -Y.
, and
Webb
,
R. L.
, 1997, “
Predictive Model for Condensation in Small Hydraulic Diameter Tubes Having Axial Micro-Fins
,”
ASME J. Heat Transfer
0022-1481,
119
(
4
), pp.
776
782
.
28.
Zhang
,
M.
, and
Webb
,
R. L.
, 2001, “
Correlation of Two-Phase Friction for Refrigerants in Small-Diameter Tubes
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
(
3–4
), pp.
131
139
.
29.
Wang
,
H. S.
, and
Rose
,
J. W.
, 2004, “
Film Condensation in Horizontal Triangular Section Microchannels: A Theoretical Model
,”
Proceedings of the Second International Conference on Microchannels and Minichannels (ICMM2004)
, Rochester, NY, Jun. 17–19, pp.
661
666
.
30.
Wang
,
H. S.
,
Rose
,
J. W.
, and
Honda
,
H.
, 2004, “
A Theoretical Model of Film Condensation in Square Section Horizontal Microchannels
,”
Chem. Eng. Res. Des.
0263-8762,
82
(
4
), pp.
430
434
.
31.
Wang
,
H. S.
, and
Rose
,
J. W.
, 2005, “
A Theory of Film Condensation in Horizontal Noncircular Section Microchannels
,”
ASME J. Heat Transfer
0022-1481,
127
(
10
), pp.
1096
1105
.
32.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
, and
Zilio
,
C.
, 2005, “
Condensation Heat Transfer and Pressure Gradient Inside Multiport Minichannels
,”
Heat Transfer Eng.
0145-7632,
26
(
3
), pp.
45
55
.
33.
Moser
,
K. W.
,
Webb
,
R. L.
, and
Na
,
B.
, 1998, “
A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes
,”
ASME J. Heat Transfer
0022-1481,
120
(
2
), pp.
410
417
.
34.
Akers
,
W. W.
,
Deans
,
H. A.
, and
Crosser
,
O. K.
, 1959, “
Condensation Heat Transfer Within Horizontal Tubes
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
55
(
29
), pp.
171
176
.
35.
Koyama
,
S.
,
Kuwahara
,
K.
, and
Nakashita
,
K.
, 2003, “
Condensation of Refrigerant in a Multi-Port Channel
,”
Proceedings of the First International Conference on Microchannels and Minichannels
, Vol.
1
, Rochester, NY, Apr. 24–25, pp.
193
205
.
36.
Wang
,
W. -W. W.
,
Radcliff
,
T. D.
, and
Christensen
,
R. N.
, 2002, “
A Condensation Heat Transfer Correlation for Millimeter-Scale Tubing With Flow Regime Transition
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
(
5
), pp.
473
485
.
37.
Agarwal
,
A.
, 2006, “
Heat Transfer and Pressure Drop During Condensation of Refrigerants in Microchannels
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
38.
Hewitt
,
G. F.
,
Shires
,
G. L.
, and
Bott
,
T. R.
, 1994,
Process Heat Transfer
,
CRC/Begell House
,
Boca Raton, FL
.
39.
Hewitt
,
G. F.
, 1984, “
Two-Phase Flow Through Orifices, Valves, Bends and Other Singularities
,”
Proceedings of the Ninth Lecture Series on Two-Phase Flow
, Norwegian Institute of Technology, Trondheim, p.
163
.
40.
Carey
,
V. P.
, 1992,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
(
Taylor & Francis Series
),
Hemisphere
,
Washington, DC
.
41.
Taylor
,
B. N.
, and
Kuyatt
,
C. E.
, 1994,
Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
42.
Chisholm
,
D.
, 1973, “
Pressure Gradients Due to Friction During the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
16
(
2
), pp.
347
358
.
43.
Mishima
,
K.
, and
Hibiki
,
T.
, 1996, “
Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes
,”
Int. J. Multiphase Flow
0301-9322,
22
(
4
), pp.
703
712
.
44.
Chisholm
,
D.
, 1967, “
A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
10
(
12
), pp.
1767
1778
.
45.
Lee
,
H. J.
, and
Lee
,
S. Y.
, 2001, “
Pressure Drop Correlations for Two-Phase Flow within Horizontal Rectangular Channels with Small Heights
,”
Int. J. Multiphase Flow
0301-9322,
27
(
5
), pp.
783
796
.
46.
Chen
,
I. Y.
,
Yang
,
K. -S.
,
Chang
,
Y. -J.
, and
Wang
,
C. -C.
, 2001, “
Two-Phase Pressure Drop of Air-Water and R-410a in Small Horizontal Tubes
,”
Int. J. Multiphase Flow
0301-9322,
27
(
7
), pp.
1293
1299
.
47.
Wilson
,
M. J.
,
Newell
,
T. A.
,
Chato
,
J. C.
, and
Infante Ferreira
,
C. A.
, 2003, “
Refrigerant Charge, Pressure Drop, and Condensation Heat Transfer in Flattened Tubes
,”
Int. J. Refrig.
0140-7007,
26
(
4
), pp.
442
451
.
48.
Jung
,
D. S.
, and
Radermacher
,
R.
, 1989, “
Prediction of Pressure Drop During Horizontal Annular Flow Boiling of Pure and Mixed Refrigerants
,”
Int. J. Heat Mass Transfer
0017-9310,
32
(
12
), pp.
2435
2446
.
49.
Breber
,
G.
,
Palen
,
J. W.
, and
Taborek
,
J.
, 1980, “
Prediction of Horizontal Tubeside Condensation of Pure Components Using Flow Regime Criteria
,”
ASME J. Heat Transfer
0022-1481,
102
(
3
), pp.
471
476
.
50.
Kosky
,
P. G.
, and
Staub
,
F. W.
, 1971, “
Local Condensing Heat Transfer Coefficients in the Annular Flow Regime
,”
AIChE J.
0001-1541,
17
(
5
), pp.
1037
1043
.
51.
El Hajal
,
J.
,
Thome
,
J. R.
, and
Cavallini
,
A.
, 2003, “
Condensation in Horizontal Tubes, Part 1: Two-Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
18
), pp.
3349
3363
.
You do not currently have access to this content.