Flow boiling of 1-methoxyheptafluoropropane (HFE 7000) in 222μm hydraulic diameter channels containing a single row of 24 inline 100μm pin fins was studied for mass fluxes from 350kg/m2s to 827kg/m2s and wall heat fluxes from 10W/cm2 to 110W/cm2. Flow visualization revealed the existence of isolated bubbles, bubbles interacting, multiple flow, and annular flow. The observed flow patterns were mapped as a function of the boiling number and the normalized axial distance. The local heat transfer coefficient during subcooled boiling was measured and found to be considerably higher than the corresponding single-phase flow. Furthermore, a thermal performance evaluation comparison with a plain microchannel revealed that the presence of pin fins considerably enhanced the heat transfer coefficient.

1.
Qu
,
W.
, and
Siu-Ho
,
A.
, 2008, “
Liquid Single-Phase in an Array of Micro-Pin-Fin—Part I: Heat Transfer Characteristics
,”
ASME J. Heat Transfer
0022-1481,
130
(
12
), p.
122402
.
2.
Qu
,
W.
, and
Siu-Ho
,
A.
, 2008, “
Liquid Single-Phase in an Array of Micro-Pin-Fin—Part II: Pressure Drop Characteristics
,”
ASME J. Heat Transfer
0022-1481,
130
(
12
), p.
124501
.
3.
Krishnamurthy
,
S.
, and
Peles
,
Y.
, 2008, “
Flow Boiling of Water in a Circular Staggered Micro-Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
5–6
), pp.
1349
1364
.
4.
Siu-Ho
,
A.
,
Qu
,
W.
, and
Pfefferkorn
,
F.
, 2007, “
Experimental Study of Pressure Drop and Heat Transfer in a Single-Phase Micropin-Fin Heat Sink
,”
ASME J. Electron. Packag.
1043-7398,
129
(
4
), pp.
479
487
.
5.
Cognata
,
T. J.
,
Hollingsworth
,
K. D.
, and
Witte
,
L. C.
, 2007, “
High-Speed Visualization of Two-Phase Flow in a Micro-Scale Pin-Fin Heat Exchanger
,”
Heat Transfer Eng.
0145-7632,
28
(
10
), pp.
861
869
.
6.
Prasher
,
R. S.
,
Dirner
,
J.
,
Chang
,
J. -Y.
,
Myers
,
A.
,
Chau
,
D.
,
He
,
D.
, and
Prstic
,
S.
, 2007, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid
,”
ASME J. Heat Transfer
0022-1481,
129
(
2
), pp.
141
153
.
7.
Koşar
,
A.
, and
Peles
,
Y.
, 2006, “
Convective Flow of Refrigerant (R-123) Across a Bank of Micro Pin Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
3142
3155
.
8.
Krishnamurthy
,
S.
, and
Peles
,
Y.
, 2007, “
Gas-Liquid Two-Phase Flow Across a Bank of Micro Pillars
,”
Phys. Fluids
1070-6631,
19
(
4
), p.
043302
.
9.
Koşar
,
A.
, and
Peles
,
Y.
, 2007, “
Boiling Heat Transfer in a Hydrofoil-Based Micro Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
5–6
), pp.
1018
1034
.
10.
Koşar
,
A.
, and
Peles
,
Y.
, 2007, “
Micro Scale Pin Fin Heat Sinks Parametric Performance Evaluation Study
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
30
(
4
), pp.
855
865
.
11.
Siu-Ho
,
A. M.
,
Qu
,
W.
, and
Pfefferkorn
,
F. E.
, 2006, “
Pressure Drop and Heat Transfer in a Single-Phase Micro-Pin-Fin Heat Sink
,”
ASME
Paper No. IMECE2006 14777.
12.
Krishnamurthy
,
S.
, and
Peles
,
Y.
, 2008, “
Two-Phase Flow Pattern Transition Across Micropillars Size Scale Effect at the Micro Scale
,”
Phys. Fluids
1070-6631,
2
, p.
023602
.
13.
Bjorg
,
R. W.
,
Hall
,
G. R.
, and
Rohsenow
,
W. M.
, 1982, “
Correlation of Forced Convection Boiling Heat Transfer Data
,”
Int. J. Heat Mass Transfer
0017-9310,
25
, pp.
753
757
.
14.
Bowring
,
R. W.
, 1962, “
Physical Model Based on Bubble Detachment and Calculation of Steam Voidage in the Subcooled Region of a Heated Channel
,”
Institutt for Atomenergi
,
Halden, Norway
, Paper No. Hpr-10.
15.
Bergles
,
A. E.
, and
Rohsenow
,
W. M.
, 1964, “
The Determination of Forced Convection, Surface Boiling Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
86
, pp.
365
372
.
16.
Kutateladze
,
S. S.
, 1961, “
Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
4
, pp.
31
45
.
17.
Kandlikar
,
S. G.
, 1998, “
Heat Transfer and Flow Characteristics in Partial Boiling, Fully Developed Boiling, and Significant Void Flow Regions of Subcooled Flow Boiling
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
395
401
.
18.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
, 1970, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
0017-9310,
13
, pp.
383
393
.
19.
Lahey
,
R. T.
, 1978, “
A Mechanistic Subcooled Boiling Model
,”
Proceedings of the Sixth International Heat Transfer Conference
, Vol.
1
,
Toronto, Canada
, pp.
292
297
.
20.
Del Valle
,
V. H. M.
, and
Kenning
,
D. B. R.
, 1985, “
Subcooled Flow Boiling at High Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
1907
1920
.
21.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
, 2005, “
Wall Heat Flux Partitioning During Subcooled Flow Boiling—Part I: Model Development
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
131
140
.
22.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
, 2005, “
Wall Heat Flux Partitioning During Subcooled Flow Boiling—Part II: Model Validation
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
141
148
.
23.
Warrier
,
G. R.
, and
Dhir
,
V. K.
, 2006, “
Heat Transfer and Wall Heat Flux Partitioning During Subcooled Flow Nucleate Boiling, A Review
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
1243
1256
.
24.
Huang
,
L. -D.
, and
Witte
,
L.
, 2001, “
Highly Subcooled Boiling in Crossflow
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
1080
1085
.
25.
Huang
,
H. L.
, and
Witte
,
L. C.
, 1996, “
An Experimental Investigation of the Effects of Subcooling and Velocity on Boiling of Freon-113
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
436
441
.
26.
Chen
,
J. C.
, 1966, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
I&EC Process Des. Dev.
,
5
(
3
), pp.
322
329
.
27.
Shah
,
M. M.
, 2005, “
Improved General Correlation for Subcooled Boiling Heat Transfer During Flow Across Tubes and Tube Bundles
,”
HVAC&R Res.
,
11
(
2
), pp.
285
303
.
28.
Cornwell
,
K.
, 1990, “
The Influence of Bubbly Flow on Boiling From a Tube in a Bundle
,”
Int. J. Heat Mass Transfer
0017-9310,
33
(
12
), pp.
2579
2584
.
29.
Gupta
,
A.
, 2005, “
Enhancement of Boiling Heat Transfer in a 5×3 Tube Bundle
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3763
3772
.
30.
Lee
,
P. C.
,
Tseng
,
F. G.
, and
Pan
,
C.
, 2004, “
Bubble Dynamics in Micro Channels. Part I: Single Microchannel
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5575
5589
.
31.
Kuo
,
C. -J.
,
Koşar
,
A.
,
Peles
,
Y.
,
Virost
,
S.
,
Mishra
,
C.
, and
Jensen
,
M.
, 2006, “
Bubble Dynamics During Boiling in Enhanced Surface Microchannels
,”
J. Microelectromech. Syst.
1057-7157,
15
(
6
), pp.
1514
1527
.
32.
Lie
,
Y.
, and
Lin
,
T.
, 2006, “
Subcooled Flow Boiling Heat Transfer and Associated Bubble Characteristics of R-134a in a Narrow Annular Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2077
2089
.
33.
Martín-Callizo
,
C.
,
Palm
,
B.
, and
Owhaib
,
W.
, 2007, “
Subcooled Flow Boiling of R-134a in Vertical Channels of Small Diameter
,”
Int. J. Multiphase Flow
0301-9322,
33
, pp.
822
832
.
34.
Han
,
C.
, and
Griffith
,
P.
, 1965, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling, Bubble Initiation, Growth and Departure
,”
Int. J. Heat Mass Transfer
0017-9310,
8
, p.
887904
.
35.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
, 1969, “
A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics
,”
ASME J. Heat Transfer
0022-1481,
44
(
14
), pp.
245
250
.
36.
Krishnamurthy
,
S.
, and
Peles
,
Y.
, 2010, “
Flow Boiling on Micropin Fins Entrenched Inside a Microchannel—Flow Patterns and Bubble Departure Diameter and Bubble Frequency
,”
ASME J. Heat Transfer
0022-1481,
132
(
4
), p.
041002
.
37.
Donnelly
,
B.
,
O’Donovan
,
T. S.
, and
Murray
,
D. B.
, 2009, “
Surface Heat Transfer Due to Sliding Bubble Motion
,”
Appl. Therm. Eng.
1359-4311,
29
(
7
), pp.
1319
1326
.
You do not currently have access to this content.