Heat transfer through rectangular permeable fins is modeled and analyzed theoretically in this work. The free stream fluid flow is considered to be normal to the upper surface of the permeable fin. The flow across the permeable fin is permitted in this work. The continuity, momentum, and energy equations are solved for the fluid flow using a similarity transformation and an iterative tridiagonal finite difference method. As such, a correlation for the Nusselt number is generated as functions of the Prandtl number (Pr) and dimensionless suction velocity (fo) for 0.7<Pr10 and 0<fo5, respectively. The energy equation for the permeable fin is generated and solved analytically using the developed correlation. It was found that permeable fins may have superiority in transferring heat over ordinary solid fins, especially at large fo values and moderate holes-to-fin surface area ratios. In addition, the critical holes-to-fin surface area ratios, below which the permeable fins transfer more heat than solid fins, is found to increase as Pr and fo increase. Finally, this work paves a way for a new passive method for enhancing heat transfer.

1.
Kays
,
W. M.
, 1955, “
Pin-Fin Heat-Exchanger Surfaces
,”
ASME J. Heat Transfer
0022-1481,
77
, pp.
471
483
.
2.
Kern
,
D. O.
, and
Kraus
,
A. D.
, 1972,
Extended Surface Heat Transfer
,
McGraw-Hill
,
New York
.
3.
Kraus
,
A. D.
, 1988, “
Sixty-Five Years of Extended Surface Technology (1922–1987)
,”
Appl. Mech. Rev.
0003-6900,
41
, pp.
321
364
.
4.
Schenider
,
P. J.
, 1955,
Conduction Heat Transfer
,
Addison-Wesley
,
Reading, MA
.
5.
Kraus
,
A. D.
,
Aziz
,
A.
, and
Welty
,
J. R.
, 2001,
Extended Surface Heat Transfer
,
Wiley
,
New York
.
6.
Kakaς
,
S.
, and,
Liu
,
H.
, 2001,
Heat Exchangers: Selection, Rating, and Thermal Design
,
CRC
,
Boca Raton, FL
.
7.
Sahiti
,
N.
,
Lemouedda
,
A.
,
Stojkovie
,
D.
,
Durst
,
F.
, and
Franz
,
E.
, 2006, “
Performance Comparison of Pin Fin In-Duct Flow Arrays With Various Cross-Sections
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
1176
1192
.
8.
Nuntaphan
,
A.
,
Kiatsiriroat
,
T.
, and
Wang
,
C. C.
, 2005, “
Air Side Performance at Low Reynolds Number of Cross-Flow Heat Exchanger Using Crimped Spiral Fins
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
, pp.
151
165
.
9.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 2002, “
Swirl Flow Heat Transfer and Pressure Drop With Twisted-Tape Inserts
,”
Adv. Heat Transfer
0065-2717,
36
, pp.
183
266
.
10.
Alebrahim
,
A.
, and
Bejan
,
A.
, 1999, “
Constructal Trees of Circular Fins for Conductive and Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3585
3597
.
11.
Almogbel
,
M.
, and
Bejan
,
A.
, 2000, “
Cylindrical Trees of Pin Fin
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
4285
4297
.
12.
Khaled
,
A. -R. A.
, 2007, “
Heat Transfer Enhancement in Hairy Fin Systems
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
250
257
.
13.
Khaled
,
A. -R. A.
, 2006, “
‘Maximizing Heat Transfer Through Joint Fin Systems
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
128
, pp.
203
206
.
14.
Khaled
,
A. -R. A.
, 2009, “
Analysis of Heat Transfer Through Bi-Convection Fins
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
122
132
.
15.
Khaled
,
A. -R. A.
, 2008, “
Heat Transfer Analysis Through Solar and Rooted Fins
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
130
, p.
074503
.
16.
Kiwan
,
S.
, and
Al-Nimr
,
M. A.
, 2001, “
Using Porous Fin for Heat Transfer Enhancement
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
790
795
.
17.
Blottner
,
F. G.
, 1970, “
Finite-Difference Methods of Solution of the Boundary-Layer Equations
,”
AIAA J.
0001-1452,
8
, pp.
193
205
.
18.
Oosthuizen
,
P. H.
, and
Naylor
,
D.
, 1999,
Introduction to Convective Heat Transfer Analysis
,
McGraw-Hill
,
New York
, p.
113
114
.
You do not currently have access to this content.