The cross-plane thermal conductivity of several nanoscale layered oxides SiO2/Y2O3, SiO2/Cr2O3, and SiO2/Al2O3, synthesized by e-beam evaporation was measured in the range from 30 K to 300 K by the 3ω method. Thermal conductivity attains values around 0.5W/mK at room temperature in multilayer samples, formed by 20 bilayers of 10 nm SiO2/10nmY2O3, and as low as 0.16W/mK for a single bilayer. The reduction in thermal conductivity is related to the high interface density, which produces a strong barrier to heat transfer rather than to the changes of the intrinsic thermal conductivity due to the nanometer thickness of the layers. We show that the influence of the first few interfaces on the overall thermal resistance is higher than the subsequent ones. Annealing the multilayered samples to 1100°C slightly increases the thermal conductivity due to changes in the microstructure. These results suggest a route to obtain suitable thermal barrier coatings for high temperature applications.

1.
Beele
,
W.
,
Marijnissen
,
G.
, and
Van Lieshout
,
A.
, 1999, “
The Evolution of Thermal Barrier Coatings-Status and Upcoming Solutions for Today's Key Issues
,”
Surf. Coat. Technol.
0257-8972,
120-121
(
799
), pp.
61
67
.
2.
Cao
,
X. Q.
,
Vassen
,
R.
, and
Stover
,
D.
, 2004, “
Ceramic Materials for Thermal Barrier Coatings
,”
J. Eur. Ceram. Soc.
0955-2219,
24
, pp.
1
10
.
3.
Hasselman
,
D. P. H.
,
Johnson
,
L. F.
,
Bentsen
,
L. D.
,
Syed
,
R.
, and
Lee
,
H. L.
, 1987, “
Thermal Diffusivity and Conductivity of Dense Polycrystalline ZrO2 Ceramic
,”
J. Am. Ceram. Soc.
0002-7820,
66
(
5
), pp.
799
806
.
4.
Clarke
,
D. R.
, 2003, “
Materials Selection Guidelines for Low Thermal Conductivity Thermal Barrier Coatings
,”
Surf. Coat. Technol.
0257-8972,
163-164
, pp.
67
74
.
5.
Schlichting
,
K. W.
,
Padture
,
N. P.
, and
Klemens
,
P. G.
, 2001, “
Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia
,”
J. Mater. Sci.
0022-2461,
36
(
12
), pp.
3003
3010
.
6.
Gao
,
P.
,
Meng
,
L. J.
,
Dos Santos
,
P. M.
,
Teixeira
,
V.
, and
Andritschky
,
M.
, 2002, “
Study of ZrO2/Al2O3 Multilayers
,”
Vacuum
0042-207X,
64
(
3-4
), pp.
267
273
.
7.
Winter
,
M. R.
, and
Clarke
,
D. R.
, 2007, “
Oxide Materials With Low Thermal Conductivity
,”
J. Am. Ceram. Soc.
0002-7820,
90
(
2
), pp.
533
540
.
8.
Soyez
,
G.
,
Eastman
,
J. A.
,
Thompson
,
L. J.
,
Bai
,
G. R.
,
Baldo
,
P. M.
,
Dimelfi
,
R. J.
,
Elmustafa
,
A. A.
,
Tambwe
,
M. F.
, and
Stone
,
D. S.
, 2000, “
Grain-Size-Dependent Thermal Conductivity of Nanocrystalline Yttria-Stabilized Zirconia Films Grown by Metal-Organic Chemical Vapor Deposition
,”
Appl. Phys. Lett.
0003-6951,
77
(
8
), pp.
1155
1157
.
9.
Clarke
,
D. R.
, and
Levi
,
C. G.
, 2003, “
Materials Design for the Next Generation of Thermal Barrier Coatings
,”
Annu. Rev. Mater. Res.
1531-7331,
33
, pp.
383
417
.
10.
Yang
,
H. S.
,
Bai
,
G. R.
,
Thomson
,
L. J.
, and
Eastman
,
J. A.
, 2002, “
Interfacial Thermal Resistance in Nanocrystalline Yttria-Stabilized Zirconia
,”
Acta Mater.
1359-6454,
50
(
9
), pp.
2309
2317
.
11.
Zeng
,
T.
, and
Chen
,
G.
, 2001, “
Phonon Heat Conduction in Thin Films: Impacts of Thermal Boundary Resistance and Internal Heat Generation
,”
ASME J. Heat Transfer
0022-1481,
123
(
2
), pp.
340
347
.
12.
Stoner
,
R. J.
, and
Maris
,
H. J.
, 1993, “
Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K
,”
Phys. Rev. B
0163-1829,
48
(
22
), pp.
16373
16387
.
13.
Clarke
,
D. R.
, and
Phillpot
,
S. R.
, 2005, “
Thermal Barrier Coatings Materials
,”
Mater. Today
1369-7021,
8
(
6
), pp.
22
29
.
14.
Yang
,
H. S.
,
Kim
,
J. W.
,
Park
,
G. H.
,
Kim
,
C. S.
,
Kihm
,
K.
,
Kim
,
S. R.
,
Kim
,
K. C.
, and
Hong
,
K. S.
, 2007, “
Interfacial Effect on Thermal Conductivity of Y2O3 Thin Films Deposited on Al2O3
,”
Thermochim. Acta
0040-6031,
455
(
1-2
), pp.
50
54
.
15.
Padture
,
N. O.
,
Gell
,
M.
, and
Jordan
,
E. H.
, 2002, “
Thermal Barrier Coatings for Gas Turbine Engine Applications
,”
Science
0036-8075,
296
, pp.
280
284
.
16.
Cahill
,
D. G.
,
Bullen
,
A.
, and
Lee
,
S. M.
, 2000, “
Interface Thermal Conductance and the Thermal Conductivity of Multilayer Thin Films
,”
High Temp. - High Press.
0018-1544,
32
, pp.
135
142
.
17.
Costescu
,
R. M.
,
Cahill
,
D. G.
,
Fabreguette
,
F. H.
,
Sechrist
,
Z. A.
, and
George
,
S. M.
, 2004, “
Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates
,”
Science
0036-8075,
303
, pp.
989
990
.
18.
Chiritescu
,
C.
,
Cahill
,
D. G.
,
Nguyen
,
N.
,
Johnson
,
D.
,
Bodapati
,
A.
,
Keblinski
,
P.
, and
Zschack
,
P.
, 2007, “
Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals
,”
Science
0036-8075,
315
, pp.
351
353
.
19.
Kumar
,
S.
, and
Drummond
,
C. H.
, 1992, “
Crystallization of Various Compositions in the Y2O3–SiO2 System
,”
J. Mater. Res.
0884-2914,
7
(
4
), pp.
997
1003
.
20.
Welch
,
J. H.
, 1960, “
A New Interpretation of the Mullite Problem
,”
Nature (London)
0028-0836,
186
, pp.
545
546
.
21.
Levin
,
E. M.
,
Robbins
,
C. R.
, and
Mcmurdie
,
H. F.
, 1974,
Phase Diagrams for Ceramists
, Vol.
1
,
M. K.
Reser
, ed.,
The American Ceramic Society
,
Columbus, OH
, pp.
130
131
.
22.
Cahill
,
D. G.
, 1990, “
Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method
,”
Rev. Sci. Instrum.
0034-6748,
61
, pp.
802
808
.
23.
MacConnell
,
A. D.
, and
Goodson
,
K. E.
, 2005, “
Thermal Conduction in Silicon Micro- and Nanostructures
,”
Annu. Rev. Heat Transfer
1049-0787,
14
, pp.
129
168
.
24.
Lee
,
S. M.
, and
Cahill
,
D. G.
, 1997, “
Heat Transport in Thin Dielectric Films
,”
J. Appl. Phys.
0021-8979,
81
(
6
), pp.
2590
2595
.
25.
Cahill
,
D. G.
,
Katiyar
,
M.
, and
Abelson
,
J. R.
, 1994, “
Thermal Conductivity of a-Si:H Thin Films
,”
Phys. Rev. B
0163-1829,
50
(
9
), pp.
6077
6081
.
26.
Yamane
,
T.
,
Nagai
,
N.
,
Takayana
,
S.
, and
Tokodi
,
M.
, 2002, “
Measurement of Thermal Conductivity of Silicon Dioxide Thin Films Using a 3ω Method
,”
J. Appl. Phys.
0021-8979,
91
(
12
), pp.
9772
9976
.
27.
Griffin
,
A. J.
, Jr.
,
Brotzen
,
F. R.
, and
Loos
,
P. J.
, 1994, “
The Effective Transverse Thermal Conductivity of Amorphous Si3N4 Thin Films
,”
J. Appl. Phys.
0021-8979,
76
(
7
), pp.
4007
4011
.
28.
Alvarez-Quintana
,
J.
, and
Rodriguez-Viejo
,
J.
, 2008, “
Interfacial Effects on the Thermal Conductivity of a-Ge Thin Films Grown on Si Substrates
,”
J. Appl. Phys.
0021-8979,
104
(
7
), p.
074903
.
29.
Mengucci
,
P.
,
Barucca
,
G.
,
Caricato
,
A. P.
,
Di Cristoforo
,
A.
,
Leggieri
,
G.
,
Lunches
,
A.
, and
Maijnia
,
G.
, 2005, “
Effects of Annealing on the Microstructure of Yttria-Stabilised Zirconia Thin Films Deposited by Laser Ablation
,”
Thin Solid Films
0040-6090,
478
(
1-2
), pp.
125
131
.
30.
Cahill
,
D. G.
, and
Pohl
,
R. O.
, 1988, “
Lattice Vibrations and Heat Transport in Crystals and Glasses
,”
Annu. Rev. Phys. Chem.
0066-426X,
39
, pp.
93
121
.
31.
Zhang
,
W.
,
Fisher
,
T. S.
, and
Mingo
,
N.
, 2007, “
Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green's Function Method
,”
ASME J. Heat Transfer
0022-1481,
129
(
4
), pp.
483
491
.
32.
Abramson
,
A.
,
Tien
,
C.
, and
Majumdar
,
A.
, 2002, “
Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study
,”
ASME J. Heat Transfer
0022-1481,
124
(
5
), pp.
963
970
.
33.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
605
668
.
34.
Bogardus
,
E. H.
, 1965, “
Third-Order Elastic Constants of Ge, MgO, and Fused SiO2
,”
J. Appl. Phys.
0021-8979,
36
(
8
), pp.
2504
2513
.
35.
Palko
,
J. W.
,
Kriven
,
W. M.
,
Sinigeiking
,
S. V.
,
Bass
,
J. D.
, and
Sayir
,
A.
, 2001, “
Elastic Constants of Yttria (Y2O3) Monocrystals to High Temperatures
,”
J. Appl. Phys.
0021-8979,
89
(
12
), pp.
7791
7796
.
You do not currently have access to this content.