The pressure drop and the convective heat transfer characteristics of ethanol and water in a circular tube with a diameter of 600μm with and without phase change have been studied experimentally. The test section consists of a glass tube coated with a transparent indium tin oxide heater film. For single-phase liquid flow (including superheated liquid) it was found that the measured Nusselt numbers and friction factors are in good agreement with the theoretical values expected from Poiseuille flow. Subsequently, the boiling heat transfer of ethanol was studied. It was found that boiling with bubble growth in both upstream and downstream directions leaving behind a thin evaporating liquid film on the tube wall is the dominant phase change process. Wavy patterns on the film surface indicate shear forces between vapor and liquid phase during slug flow. Temporary dryout phenomena occur even at a low mean vapor quality due to film rupture as a result of film instabilities. Local Nusselt numbers are calculated for the two-phase flow at different heat fluxes and Reynolds numbers. Compared with single-phase flow the heat transfer is enhanced by a factor of 3–8.

1.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic
,
New York
.
2.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
, 2001, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
1089-3954,
5
(
4
), pp.
293
311
.
3.
Palm
,
B.
, 2001, “
Heat Transfer in Microchannels
,”
Microscale Thermophys. Eng.
1089-3954,
5
(
3
), pp.
155
175
.
4.
Morini
,
G. L.
, 2004, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
1290-0729,
43
(
7
), pp.
631
651
.
5.
Lelea
,
D.
,
Nishio
,
S.
, and
Takano
,
K.
, 2004, “
The Experimental Research on Microtube Heat Transfer and Fluid Flow of Distilled Water
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
12–13
), pp.
2817
2830
.
6.
Celata
,
G. P.
,
Cumo
,
M.
,
Marconi
,
V.
,
McPhail
,
S. J.
, and
Zummo
,
G.
, 2006, “
Microtube Liquid Single-Phase Heat Transfer in Laminar Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
19–20
), pp.
3538
3546
.
7.
Gasche
,
J. L.
, 2006, “
Carbon Dioxide Evaporation in a Single Microchannel
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
, pp.
69
83
. 1678-5878
8.
Yen
,
T. H.
,
Shoji
,
M.
,
Takemura
,
F.
,
Suzuki
,
Y.
, and
Kasagi
,
N.
, 2006, “
Visualization of Convective Boiling Heat Transfer in Single Microchannels With Different Shaped Cross-Sections
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
21–22
), pp.
3884
3894
.
9.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
, 2005, “
Explosive Boiling of Water in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
0301-9322,
31
(
4
), pp.
371
392
.
10.
Zhang
,
L. A.
,
Wang
,
E. N.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
, 2005, “
Phase Change Phenomena in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
8
), pp.
1572
1582
.
11.
Hardt
,
S.
,
Schilder
,
B.
,
Tiemann
,
D.
,
Kolb
,
G.
,
Hessel
,
V.
, and
Stephan
,
P.
, 2007, “
Analysis of Flow Patterns Emerging During Evaporation in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
1–2
), pp.
226
239
.
12.
Verein Deutscher Ingenieure
, 2006,
Wärmeatlas, erw. aufl
, Vol.
10
,
VDI-Verlag
,
Düsseldorf
.
13.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
, 2004, “
Mini- and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
17–18
), pp.
3993
4004
.
14.
Grigull
,
U.
, and
Tratz
,
H.
, 1965, “
Thermischer einlauf in ausgebildeter laminarer rohrströmung
,”
Int. J. Heat Mass Transfer
0017-9310,
8
(
5
), pp.
669
678
.
15.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Pogrebnyak
,
E.
, 2003, “
Two-Phase Flow Patterns in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
0301-9322,
29
(
3
), pp.
341
360
.
16.
Li
,
H. Y.
,
Tseng
,
F. G.
, and
Pan
,
C.
, 2004, “
Bubble Dynamics in Microchannels. Part II: Two Parallel Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
25
), pp.
5591
5601
.
17.
Lee
,
P. C.
,
Tseng
,
F. G.
, and
Pan
,
C.
, 2004, “
Bubble Dynamics in Microchannels. Part I: Single Microchannel
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
25
), pp.
5575
5589
.
18.
Pettersen
,
J.
, 2004, “
Flow Vaporization of CO2 in Microchannel Tubes
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
(
2–3
), pp.
111
121
.
19.
Kandlikar
,
S. G.
, 2006, “
Nucleation Characteristics and Stability Considerations During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
(
5
), pp.
441
447
.
20.
Wang
,
G.
,
Cheng
,
P.
, and
Wu
,
H.
, 2007, “
Unstable and Stable Flow Boiling in Parallel Microchannels and in a Single Microchannel
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
21–22
), pp.
4297
4310
.
21.
Wang
,
G. D.
, and
Cheng
,
P.
, 2008, “
An Experimental Study of Flow Boiling Instability in a Single Microchannel
,”
Int. Commun. Heat Mass Transfer
0735-1933,
35
(
10
), pp.
1229
1234
.
22.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
, 2006, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
0022-1481,
128
(
4
), pp.
389
396
.
23.
Thome
,
J. R.
, and
Collier
,
J. G.
, 1996,
Convective Boiling and Condensation
, 3rd ed.,
Clarendon
,
Oxford
.
24.
Yen
,
T. H.
,
Kasagi
,
N.
, and
Suzuki
,
Y.
, 2003, “
Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes
,”
Int. J. Multiphase Flow
0301-9322,
29
(
12
), pp.
1771
1792
.
25.
Lin
,
S.
,
Kew
,
P. A.
, and
Cornwell
,
K.
, 2001, “
Two-Phase Heat Transfer to a Refrigerant in a 1 mm Diameter Tube
,”
Int. J. Refrig.
0140-7007,
24
(
1
), pp.
51
56
.
26.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
15
), pp.
2755
2771
.
27.
Thome
,
J. R.
,
Dupont
,
V.
, and
Jacobi
,
A. M.
, 2004, “
Heat Transfer Model for Evaporation in Microchannels. Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
14–16
), pp.
3375
3385
.
28.
Dupont
,
V.
,
Thome
,
J. R.
, and
Jacobi
,
A. M.
, 2004, “
Heat Transfer Model for Evaporation in Microchannels. Part II: Comparison With the Database
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
14–16
), pp.
3387
3401
.
29.
Taylor
,
G. I.
, 1961, “
Deposition of a Viscous Fluid on the Wall of a Tube
,”
J. Fluid Mech.
0022-1120,
10
(
2
), pp.
161
165
.
30.
Aussillous
,
P.
, and
Quere
,
D.
, 2000, “
Quick Deposition of a Fluid on the Wall of a Tube
,”
Phys. Fluids
1070-6631,
12
(
10
), pp.
2367
2371
.
31.
Han
,
Y.
, and
Shikazono
,
N.
, 2008, “
Thickness of Liquid Film Formed in Slug Flow in Micro Tube
,”
ECI International Conference on Heat Transfer and Fluid Flow in Microscale
, Sept. 21–26.
32.
Dupont
,
V.
,
Miscevic
,
M.
,
Joly
,
J. L.
, and
Platel
,
V.
, 2003, “
Boiling Incipience of Highly Wetting Liquids in Horizontal Confined Space
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
22
), pp.
4245
4256
.
33.
Kandlikar
,
S. G.
, 2006,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
, 1st ed.,
Elsevier
,
New York
.
34.
Chen
,
R. Y.
, 1973, “
Flow in Entrance Region at Low Reynolds-Numbers
,”
ASME J. Fluids Eng.
0098-2202,
95
(
1
), pp.
153
158
.
35.
Kuhlmann
,
H. C.
, 2007,
Stroemungsmechanik
,
Pearson Sudium
,
München
.
You do not currently have access to this content.