Abstract

A comprehensive analysis of bioheat transport through a double layer and multilayer biological media is presented in this work. Analytical solutions have been developed for blood and tissue phase temperatures and overall heat exchange correlations, incorporating thermal conduction in tissue and vascular system, blood-tissue convective heat exchange, metabolic heat generation, and imposed heat flux, utilizing both local thermal nonequilibrium and equilibrium models in porous media theory. Detailed solutions as well as Nusselt number distributions are given, for the first time, for two primary conditions, namely, isolated core region and uniform core temperature. The solutions incorporate the pertinent effective parameters for each layer, such as volume fraction of the vascular space, ratio of the blood, and the tissue matrix thermal conductivities, interfacial blood-tissue heat exchange, tissue/organ depth, arterial flow rate and temperature, body core temperature, imposed hyperthermia heat flux, metabolic heat generation, and blood physical properties. Interface temperature profiles are also obtained based on the continuity of temperature and heat flux through the interface and the physics of the problem. Comparisons between these analytical solutions and limiting cases from previous works display an excellent agreement. These analytical solutions establish a comprehensive presentation of bioheat transport, which can be used to clarify various physical phenomena as well as establishing a detailed benchmark for future works in this area.

1.
Oleson
,
J. R.
,
Dewhirst
,
M. W.
,
Harrelson
,
J. M.
,
Leopold
,
K. A.
,
Samulski
,
T. V.
, and
Tso
,
C. Y.
, 1989, “
Tumor Temperature Distributions Predict Hyperthermia Effect
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
16
(
3
), pp.
559
70
. 0360-3016
2.
Field
,
S. B.
, and
Hand
,
J. W.
, 1990,
An Introduction to the Practical Aspects of Clinical Hyperthermia
,
Taylor & Francis
,
New York
.
3.
Diederich
,
C. J.
, 2005, “
Thermal Ablation and High-Temperature Thermal Therapy: Overview of Technology and Clinical Implementation
,”
Int. J. Hyperthermia
0265-6736,
21
(
8
), pp.
745
753
.
4.
Wust
,
P.
,
Hildebrandt
,
B.
,
Sreenivasa
,
G.
,
Rau
,
B.
,
Gellermann
,
J.
,
Riess
,
H.
,
Felix
,
R.
, and
Schlag
,
P. M.
, 2002, “
Hyperthermia in Combined Treatment of Cancer
,”
Lancet Oncol.
1470-2045,
3
(
8
), pp.
487
497
.
5.
Hall
,
E. J.
, and
Roizin-Towle
,
L.
, 1984, “
Biological Effects of Heat
,”
Cancer Res.
0008-5472,
44
, pp.
4708s
4713s
.
6.
Field
,
S. B.
, 1987, “
Hyperthermia in the Treatment of Cancer
,”
Phys. Med. Biol.
0031-9155,
32
(
7
), pp.
789
811
.
7.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2009, “
Analytical Characterization of Heat Transfer Through Biological Media Incorporating Hyperthermia Treatment
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
5–6
), pp.
1608
1618
.
8.
Urano
,
M.
, 1999, “
For the Clinical Application of Thermochemotherapy Given at Mild Temperatures
,”
Int. J. Hyperthermia
0265-6736,
15
(
2
), pp.
79
107
.
9.
van der Zee
,
J.
,
González González
,
D.
,
van Rhoon
,
G. C.
,
van Dijk
,
J. D. P.
,
van Putten
,
W. L. J.
, and
Hart
,
A. A. M.
, 2000, “
Comparison of Radiotherapy Alone With Radiotherapy Plus Hyperthermia in Locally Advanced Pelvic Tumours: A Prospective, Randomised, Multicentre Trial
,”
Lancet
0140-6736,
355
(
9210
), pp.
1119
1125
.
10.
Pennes
,
H. H.
, 1948, “
Analysis of Tissue and Arterial Blood Temperature in the Resting Human Forearm
,”
J. Appl. Physiol.
8750-7587,
1
, pp.
93
122
.
11.
Charny
,
C. K.
, 1992, “
Mathematical Models of Bioheat Transfer
,”
Adv. Heat Transfer
0065-2717,
22
, pp.
19
155
.
12.
Wulff
,
W.
, 1974, “
The Energy Conservation Equation for Living Tissue
,”
IEEE Trans. Biomed. Eng.
0018-9294,
BME-21
(
6
), pp.
494
495
.
13.
Klinger
,
H. G.
, 1974, “
Heat Transfer in Perfused Biological Tissue—I: General Theory
,”
Bull. Math. Biol.
0092-8240,
36
(
4
), pp.
403
415
.
14.
Chen
,
M. M.
, and
Holmes
,
K. R.
, 1980, “
Microvascular Contributions in Tissue Heat Transfer
,”
Ann. N.Y. Acad. Sci.
0077-8923,
335
, pp.
137
150
.
15.
Weinbaum
,
S.
,
Jiji
,
L. M.
, and
Lemons
,
D. E.
, 1984, “
Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer. Part I. Anatomical Foundation and Model Conceptualization
,”
ASME J. Biomech. Eng.
0148-0731,
106
(
4
), pp.
321
330
.
16.
Jiji
,
L. M.
,
Weinbaum
,
S.
, and
Lemons
,
D. E.
, 1984, “
Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer—Part II: Model Formulation and Solution
,”
ASME J. Biomech. Eng.
0148-0731,
106
(
4
), pp.
331
341
.
17.
Weinbaum
,
S.
, and
Jiji
,
L. M.
, 1985, “
A New Simplified Bioheat Equation for the Effect of Blood Flow on Local Average Tissue Temperature
,”
ASME J. Biomech. Eng.
0148-0731,
107
(
2
), pp.
131
139
.
18.
Mitchell
,
J. W.
, and
Myers
,
G. E.
, 1968, “
An Analytical Model of the Countercurrent Heat Exchange Phenomena
,”
Biophys. J.
0006-3495,
8
, pp.
897
911
.
19.
Keller
,
K. H.
, and
Seilder
,
L.
, 1971, “
An Analysis of Peripheral Heat Transfer in Man
,”
J. Appl. Physiol.
8750-7587,
30
(
5
), pp.
779
789
.
20.
Chen
,
C.
, and
Xu
,
L. X.
, 2003, “
A Vascular Model for Heat Transfer in an Isolated Pig Kidney During Water Bath Heating
,”
ASME J. Heat Transfer
0022-1481,
125
(
5
), pp.
936
943
.
21.
Baish
,
J. W.
,
Ayyaswamy
,
P. S.
, and
Foster
,
K. U.
, 1986, “
Small Scale Temperature Fluctuations in Perfused Tissue During Local Hyperthermia
,”
ASME J. Biomech. Eng.
0148-0731,
108
(
3
), pp.
246
250
.
22.
Baish
,
J. W.
,
Ayyaswamy
,
P. S.
, and
Foster
,
K. R.
, 1986, “
Heat Transport Mechanisms in Vascular Tissues: A Model Comparison
,”
ASME J. Biomech. Eng.
0148-0731,
108
(
4
), pp.
324
331
.
23.
Abraham
,
J. P.
, and
Sparrow
,
E. M.
, 2007, “
A Thermal-Ablation Bioheat Model Including Liquid-to-Vapor Phase Change, Pressure- and Necrosis-Dependent Perfusion, and Moisture-Dependent Properties
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
13–14
), pp.
2537
2544
.
24.
Arkin
,
H.
,
Xu
,
L. X.
, and
Holmes
,
K. R.
, 1994, “
Recent Developments in Modeling Heat Transfer in Blood Perfused Tissues
,”
IEEE Trans. Biomed. Eng.
0018-9294,
41
, pp.
97
107
.
25.
Chato
,
J. C.
, 1980, “
Heat Transfer to Blood Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
2
), pp.
110
118
.
26.
Khanafer
,
K.
, and
Vafai
,
K.
, 2009, “
Synthesis of Mathematical Models Representing Bioheat Transport
,”
Advance in Numerical Heat Transfer
, Vol.
3
,
W. J.
Minkowycz
and
E. M.
Sparrow
, eds.,
Taylor & Francis
,
London
, pp.
1
28
.
27.
Nakayama
,
A.
, and
Kuwahara
,
F.
, 2008, “
A General Bioheat Transfer Model Based on the Theory of Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
11–12
), pp.
3190
3199
.
28.
Khaled
,
A. R.
, and
Vafai
,
K.
, 2003, “
The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4989
5003
.
29.
Vafai
,
K.
, and
Tien
,
C. L.
, 1981, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
24
, pp.
195
203
.
30.
Sozen
,
M.
, and
Vafai
,
K.
, 1990, “
Analysis of the Non-Thermal Equilibrium Condensing Flow of a Gas Through a Packed Bed
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
1247
1261
.
31.
Vafai
,
K.
, and
Sozen
,
M.
, 1990, “
Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
690
699
.
32.
Quintard
,
M.
, and
Whitaker
,
S.
, 2000, “
Theoretical Analysis of Transport in Porous Media
,”
Handbook of Porous Media
,
K.
Vafai
, ed.,
Marcel Dekker Inc.
,
New York
, pp.
1
52
.
33.
Lee
,
D. Y.
, and
Vafai
,
K.
, 1999, “
Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
423
435
.
34.
Amiri
,
A.
, and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Nonthermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
939
954
.
35.
Alazmi
,
B.
, and
Vafai
,
K.
, 2002, “
Constant Wall Heat Flux Boundary Conditions in Porous Media Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3071
3087
.
36.
Amiri
,
A.
,
Vafai
,
K.
, and
Kuzay
,
T. M.
, 1995, “
Effect of Boundary Conditions on Non-Darcian Heat Transfer Through Porous Media and Experimental Comparisons
,”
Numer. Heat Transfer, Part A
1040-7782,
27
, pp.
651
664
.
37.
Marafie
,
A.
, and
Vafai
,
K.
, 2001, “
Analysis of Non-Darcian Effects on Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4401
4411
.
38.
Jiang
,
S. C.
,
Ma
,
N.
,
Li
,
H. J.
, and
Zhang
,
X. X.
, 2002, “
Effects of Thermal Properties and Geometrical Dimensions on Skin Burn Injuries
,”
Burns
0305-4179,
28
(
8
), pp.
713
717
.
39.
Wang
,
H.
,
Dai
,
W.
, and
Bejan
,
A.
, 2007, “
Optimal Temperature Distribution in a 3D Triple-Layered Skin Structure Embedded With Artery and Vein Vasculature and Induced by Electromagnetic Radiation
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
9–10
), pp.
1843
1854
.
40.
Ma
,
N.
,
Gao
,
X.
, and
Zhang
,
X. X.
, 2004, “
Two-Layer Simulation Model of Laser-Induced Interstitial Thermo-Therapy
,”
Lasers Med. Sci.
0268-8921,
18
, pp.
184
189
.
41.
Khakpour
,
M.
, and
Vafai
,
K.
, 2008, “
A Critical Assessment of Arterial Transport Models
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
807
822
.
42.
Curry
,
F. E.
, 1984, “
Mechanics and Thermodynamics of Transcapillary Exchange
,”
Handbook of Physiology
,
E. M.
Renkin
, ed.,
American Physiological Society
,
Bethesda, MD
, Vol.
IV
, Chap. 8.
43.
Ogston
,
A. G.
, 1958, “
The Spaces in a Uniform Random Suspension of Fibers
,”
Trans. Faraday Soc.
0014-7672,
54
, pp.
1754
1757
.
44.
Ogston
,
A. G.
,
Preston
,
B. N.
, and
Wells
,
J. D.
, 1973, “
On the Transport of Compact Particles Through Solutions of Chain-Polymer
,”
Proc. R. Soc. London, Ser. A
0950-1207,
333
, pp.
297
316
.
45.
Schnitzer
,
J. E.
, 1988, “
Analysis of Steric Partition Behavior of Molecules in Membranes Using Statistical Physics. Application to Gel Chromatography and Electrophoresis
,”
Biophys. J.
0006-3495,
54
, pp.
1065
1076
.
46.
Yuan
,
F.
,
Chien
,
S.
, and
Weinbaum
,
S.
, 1991, “
A New View of Convective-Diffusive Transport Processes in the Arterial Intima
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
314
329
.
47.
Huang
,
Y.
,
Rumschitzki
,
D.
,
Chien
,
S.
, and
Weinbaum
,
S.
, 1994, “
A Fiber Matrix Model for the Growth of Macromolecular Leakage Spots in the Arterial Intima
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
430
445
.
48.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2009, “
Analytical Characterization and Production of an Isothermal Surface for Biological and Electronics Applications
,”
ASME J. Heat Transfer
0022-1481,
131
(
5
), p.
052604
.
49.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2008, “
A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
15–16
), pp.
3701
3711
.
50.
Mahjoob
,
S.
,
Vafai
,
K.
, and
Beer
,
N. R.
, 2008, “
Rapid Microfluidic Thermal Cycler for Polymerase Chain Reaction Nucleic Acid Amplification
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
9–10
), pp.
2109
2122
.
You do not currently have access to this content.