In heavy-frame advanced turbine systems, steam is used as a coolant for turbine blade cooling. The concept of injecting mist into the impinging jets of steam was experimentally proved as an effective way of significantly enhancing the cooling effectiveness in the laboratory under low pressure and temperature conditions. However, whether or not mist/steam cooling is applicable under actual gas turbine operating conditions is still subject to further verification. Recognizing the difficulties of conducting experiments in an actual high-pressure, high-temperature working gas turbine, a simulation using a computational fluid dynamic (CFD) model calibrated with laboratory data would be an opted approach. To this end, the present study conducts a CFD model calibration against the database of two experimental cases including a slot impinging jet and three rows of staggered impinging jets. The calibrated CFD model was then used to predict the mist cooling enhancement at the elevated gas turbine working condition. Using the experimental results, the CFD model has been tuned by employing different turbulence models, computational cells, and wall y+ values. In addition, the effects of different forces (e.g., drag, thermophoretic, Brownian, and Saffman’s lift force) are also studied. None of the models is a good predictor for all the flow regions from near the stagnation region to far-field downstream of the jets. Overall speaking, both standard k-ε and Reynolds stress model (RSM) turbulence models perform better than other models. The RSM model has produced the closest results to the experimental data due to its capability of modeling the nonisotropic turbulence shear stresses in the 3D impinging jet fields. The simulated results show that the calibrated CFD model can predict the heat transfer coefficient of steam-only case within 2–5% deviations from the experimental results for all the cases. When mist is employed, the prediction of wall temperatures is within 5% for a slot jet and within 10% for three-row jets. The predicted results with 1.5% mist at the gas turbine working condition show the mist cooling enhancement of 20%, whereas in the laboratory condition, the enhancement is predicted as 80%. Increasing mist ratio to 5% increased the cooling enhancement to about 100% at the gas turbine working condition.

1.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
, 2000, “
Mist/Steam Cooling in a Heated Horizontal Tube: Part 1: Experimental System
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
360
365
.
2.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
, 2000, “
Mist/Steam Cooling in a Heated Horizontal Tube: Part 2: Results and Modeling
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
366
374
.
3.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
, 2000, “
Mist/Steam Cooling in a 180-Degree Tube
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
749
756
.
4.
Li
,
X.
,
Gaddis
,
T.
, and
Wang
,
T.
, 2001, “
Mist/Steam Heat Transfer of Confined Slot Jet Impingement
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
161
167
.
5.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
, 2003, “
Mist/Steam Heat Transfer With Jet Impingement Onto a Concave Surface
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
438
446
.
6.
Li
,
X.
,
Gaddis
,
T.
, and
Wang
,
T.
, 2003, “
Mist/Steam Cooling by a Row of Impinging Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2279
2290
.
7.
Wang
,
T.
,
Gaddis
,
J. L.
, and
Li
,
X.
, 2005, “
Mist/Steam Heat Transfer of Multiple Rows of Impinging Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5179
5191
.
8.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
, 2001, “
Modeling of Heat Transfer in a Mist/Steam Impinging Jet
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
1086
1092
.
9.
Chou
,
Y. J.
, and
Hung
,
Y. H.
, 1994, “
Impingement Cooling of an Isothermally Heated Surface With a Confined Slot Jet
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
479
482
.
10.
Chou
,
Y. J.
, and
Hung
,
Y. H.
, 1994, “
Fluid Flow and Heat Transfer of an Extended Slot Jet Impingement
,”
J. Thermophys. Heat Transfer
0887-8722,
116
, pp.
538
545
.
11.
Laschefski
,
H.
,
Cziesla
T.
,
Biswas
,
G.
, and
Mitra
,
N. K.
, 1996, “
Numerical Investigation of Heat Transfer by Rows of Rectangular Impinging Jets
,”
Numer. Heat Transfer
0149-5720,
30
, pp.
87
101
.
12.
Cziesla
,
T.
,
Tandogan
,
E.
, and
Mitra
,
N. K.
, 1997, “
Large Eddy Simulation of Heat Transfer From Impinging Slot Jets
,”
Numer. Heat Transfer
0149-5720,
32
, pp.
1
17
.
13.
Yang
,
Y. T.
, and
Shyu
,
C. H.
, 1998, “
Numerical Study of Multiple Impinging Slot Jets With an Inclined Confinement Surface
,”
Numer. Heat Transfer
0149-5720,
33
, pp.
23
37
.
14.
Tzeng
,
P. Y.
,
Soong
,
C. Y.
, and
Hsieh
,
C. D.
, 1999, “
Numerical Investigation of Heat Transfer Under Confined Impinging Turbulent Slot Jets
,”
Numer. Heat Transfer
0149-5720,
35
, pp.
903
924
.
15.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
, 2007, “
Effect of Hole Spacing on Jet Array Impingement Heat Transfer
,”
ASME
Paper No. GT2007-28292.
16.
Shimizu
,
A.
,
Echigo
,
R.
, and
Hasegawa
,
S.
, 1979, “
Impinging Jet Heat Transfer With Gas-Solid Suspension Medium
,”
Heat Transfer Conference
, San Diego, CA, pp.
155
160
.
17.
Yoshida
,
H.
,
Suenaga
,
K.
, and
Echigo
,
R.
, 1990, “
Turbulence Structure and Heat Transfer of a Two-Dimensional Impinging Jet With Gas-Solid Suspensions
,”
Int. J. Heat Mass Transfer
0017-9310,
33
(
5
), pp.
859
867
.
18.
Li
,
X.
, and
Wang
,
T.
, 2006, “
Simulation of Film Cooling Enhancement With Mist Injection
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
509
519
.
19.
Li
,
X.
, and
Wang
,
T.
, 2007, “
Effects of Various Modelling on Mist Film Cooling
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
472
482
.
20.
Li
,
X.
, and
Wang
,
T.
, 2008, “
Two-Phase Flow Simulation of Mist Film Cooling on Turbine Blades With Conjugate Internal Cooling
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
102901
.
21.
Terekhov
,
V. I.
, and
Pakhomov
,
M. A.
, 2006, “
Numerical Study of the Near-Wall Droplet Jet in a Tube With Heat Flux on the Surface
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
47
, pp.
1
11
.
22.
Li
,
X.
, and
Wang
,
T.
, 2008, “
Computational Analysis of Surface Curvature Effect on Mist Film Cooling Performance
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
121901
.
23.
Choudhury
,
D.
, 1993, “
Introduction to the Renormalization Group Method and Turbulence Modeling
,” Technical Memorandum No. TM-107, Fluent, Inc.
24.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
,
DCW
,
La Canada, CA
.
25.
Menter
,
F.
, 1993, “
Zonal Two Equation Model for Aerodynamic Flows
,” AIAA Paper No. 93-2906.
26.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972,
Lectures in Mathematical Models of Turbulence
,
Academic
,
London
.
27.
Morris
,
G. K.
,
Garimella
,
S. V.
, and
Amano
,
R. S.
, 1996, “
Prediction of Jet Impingement Heat Transfer Using a Hybrid Wall Treatment With Different Turbulent Prandtl Number Functions
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
562
569
.
28.
Saffman
,
P. G.
, 1965, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
0022-1120,
22
, pp.
385
400
.
29.
Talbot
,
L.
,
Cheng
,
R. K.
,
Schefer
,
R. W.
, and
Willis
,
D. R.
, 1980, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
0022-1120,
101
, pp.
737
758
.
30.
Li
,
A.
, and
Ahmadi
,
G.
, 1992, “
Dispersion and Deposition of Spherical Particles From Point Sources in a Turbulent Channel Flow
,”
Aerosol Sci. Technol.
0278-6826,
16
, pp.
209
226
.
31.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
, 1952, “
Evaporation From Drops, Part I
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
141
146
.
32.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, Jr.
, 1952, “
Evaporation From Drops, Part II
,”
Chem. Eng. Prog.
0360-7275,
48
, pp.
173
180
.
33.
Kuo
,
K. Y.
, 1986,
Principles of Combustion
,
Wiley
,
New York
.
34.
Fluent, Inc.
, 2005, Version 6.2.16, Fluent Manual.
35.
O’Rourke
,
P. J.
, 1981, “
Collective Drop Effects on Vaporizing Liquid Sprays
,” Ph.D. thesis, Princeton University, Princeton, NJ.
36.
Taylor
,
G. I.
, 1963, “
The Shape and Acceleration of a Drop in a High Speed Air Stream
,”
The Scientific Papers of G. I. Taylor
,
G. K.
Batchelor
, ed.,
Cambridge University Press
,
Cambridge
.
37.
Dhanasekaran
,
T. S.
, and
Wang
,
T.
, 2008, “
Validation of Mist/Steam Cooling CFD Model in a Horizontal Tube
,”
ASME
Paper No. HT2008-5556280.
38.
Wachters
,
L. H. J.
, and
Westerling
,
N. A. J.
, 1966, “
The Heat Transfer From a Hot Wall to Impinging Water Drops in the Spheroidal State
,”
Chem. Eng. Sci.
0009-2509,
21
, pp.
1047
1056
.
You do not currently have access to this content.