An experimental investigation has been carried out to determine the thermal behavior of cooling fluid as it passes through a vortex tube and the effects of the orifice nozzle number and the inlet pressure on the heating and cooling performance of the counterflow type vortex tube (RHVT). Experiments have been performed using oxygen (O2), nitrogen (N2), and argon (Ar). Five orifices have been fabricated and used during the experimental study with different nozzle numbers of 2, 3, 4, 5, and 6. The orifices used at these experiments are made of the polyamide plastic material. The thermal conductivity of polyamide plastic material is 0.25W/mK. To determine the energy separation, the inlet pressure values were adjusted from 150 kPa to 700 kPa with 50 kPa increments for each one of the orifices and each one of the studied fluids. The vortex tube that was used during the experiments has L/D ratio of 15 and the cold mass fraction was held constant at 0.5. As a result of the experimental study, it is determined that the temperature gradient between the cold and hot exits is decreased depending on the orifice nozzle number increase. Exergy analyses have been realized for each one of the studied fluids under the same inlet pressures with the experiments (Pi=150700). The exergy efficiency of the vortex tube is more affected by inlet pressure than nozzle number.

1.
Khodorkov
,
L.
,
Poshernev
,
N. V.
, and
Zhidkov
,
M. A.
, 2003, “
The Vortex Tube–A Universal Device for Heating, Cooling, Cleaning, and Drying Gases and Separating Gas Mixtures
,”
Chem. Petrol. Eng.
,
39
, pp.
409
415
.
2.
Wu
,
Y. T.
,
Ding
,
Y.
,
Ji
,
Y. B.
,
Ma
,
C. F.
, and
Ge
,
M. C.
, 2007, “
Modification and Experimental Research on Vortex Tube
,”
Int. J. Refrig.
0140-7007,
30
, pp.
1042
1049
.
3.
Lewins
,
J.
, and
Bejan
,
A.
, 1999, “
Vortex Tube Optimization Theory
,”
Energy
0360-5442,
24
, pp.
931
943
.
4.
Eiamsa-ard
,
S.
, and
Promvonge
,
P.
, 2008, “
Review of Ranque–Hilsch Effects in Vortex Tubes
,”
Renewable Sustainable Energy Rev.
1364-0321,
12
, pp.
1822
1842
.
5.
Aljuwayhel
,
N. F.
,
Nellis
,
G. F.
, and
Klein
,
S. A.
, 2005, “
Parametric and Internal Study of the Vortex Tube Using a CFD Model
,”
Int. J. Refrig.
0140-7007,
28
, pp.
442
450
.
6.
Kırmacı
,
V.
, and
Uluer
,
O.
, 2008, “
The Effects of Orifice Nozzle Number on Heating and Cooling Performance of Vortex Tubes: An Experimental Study
,”
Instrum. Sci. Technol.
1073-9149,
36
, pp.
493
502
.
7.
Gao
,
C. M.
,
Bosschaart
,
K. J.
,
Zeegers
,
J. C. H.
, and
de Waele
,
A. T. A. M.
, 2005, “
Experimental Study on a Simple Ranque–Hilsch Vortex Tube
,”
Cryogenics
0011-2275,
45
, pp.
173
183
.
8.
Chengming
,
G.
, 2005,
Experimental Study on the Ranque-Hilsch Vortex Tube
,
Technische Universiteit Eindhoven
,
Eindhoven
, p.
151
.
9.
Cockerill
,
T.
, 1995, “
Thermodynamic and Fluid Mechanics of Ranque–Hilsch Vortex Tube
,” MS thesis, University of Cambridge, UK, p.
294
.
10.
Cao
,
Y.
,
Wu
,
J.
,
Luo
,
E. C.
, and
Chen
,
G.
, 2001, “
Research Progress and Overview on Vortex Tube
,”
Cryogenics
0011-2275,
6
(
124
), pp.
1
5
.
11.
Fröhlingsdorf
,
W.
, and
Unger
,
H.
, 1999, “
Numerical Investigations of the Compressible Flow and the Energy Separation in the Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
415
422
.
12.
Ahlborn
,
B.
,
Keller
,
J. U.
,
Staudt
,
R.
,
Treitz
,
G.
, and
Rebhan
,
E.
, 1994, “
Limits of Temperature Separation in a Vortex Tube
,”
J. Phys. D
0022-3727,
27
, pp.
480
488
.
13.
Ahlborn
,
B.
,
Keller
,
J. U.
, and
Rebhan
,
E.
, 1998, “
The Heat Pump in a Vortex Tube
,”
J. Non-Equilib Thermodyn
,
23
, pp.
159
165
.
14.
Trofimov
,
V. M.
, 2000, “
Physical Effect in Ranque Vortex Tubes
,”
JETP Lett.
0021-3640,
72
, pp.
249
252
.
15.
Saidi
,
M. H.
, and
Valipour
,
M. S.
, 2003, “
Experimental Modeling of Vortex Tube Refrigerator
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
1971
1980
.
16.
Singh
,
P. K.
,
Tathgir
,
R. G.
,
Gangacharyulu
,
D.
, and
Grewal
,
G. S.
, 2004, “
An Experimental Performance Evaluation of Vortex Tube
,”
J. Inst. Eng. (India), Part AG
0257-3431,
84
, pp.
149
153
.
17.
Dincer
,
K.
,
Baskaya
,
S.
,
Uysal
,
B. Z.
, and
Ucgul
,
I.
, 2009, “
Experimental Investigation of the Performance of a Ranque–Hilsch Vortex Tube With Regard to a Plug Located at the Hot Outlet
,”
Int. J. Refrig.
0140-7007,
32
, pp.
87
94
.
18.
Kulkarni
,
M. R.
, and
Sardesai
,
C. R.
, 2002, “
Enrichment of Methane Concentration via Separation of Gases Using Vortex Tubes
,”
J. Energy Eng.
0733-9402,
128
(
1
), pp.
1
12
.
19.
Promvonge
,
P.
, and
Eiamsa-ard
,
S.
, 2004, “
Experimental Investigation of Temperature Separation in a Vortex Tube Refrigerator With Snail Entrance
,”
ASEAN J Sci Technol. Dev.
,
21
, pp.
297
308
.
20.
Promvonge
,
P.
, and
Eiamsa-ard
,
S.
, 2005, “
Investigation on the Vortex Thermal Separation in a Vortex Tube Refrigerator
,”
ScienceAsia
1513-1874,
31
, pp.
215
223
.
21.
Aydın
,
O.
, and
Baki
,
M.
, 2006, “
An Experimental Study on the Design Parameters of a Counterflow Vortex Tube
,”
Energy
0360-5442,
31
, pp.
2763
2772
.
22.
Pinar
,
A. M.
,
Uluer
,
O.
, and
Kırmacı
,
V.
, 2009, “
Optimization of Counter Flow Ranque–Hilsch Vortex Tube Performance Using Taguchi Method
,”
Int. J. Refrig.
0140-7007,
32
, pp.
1487
1494
.
23.
Dincer
,
K.
,
Avcı
,
A.
,
Baskaya
,
S.
, and
Berber
,
A.
, 2010, “
Experimental Investigation and Exergy Analysis of the Performance of a Counter Flow Ranque-Hilsch Vortex Tube With Regard to Nozzle Cross-Section Areas
,”
Int. J. Refrig.
0140-7007,
33
, pp.
954
962
.
24.
Kırmacı
,
V.
, and
Uluer
,
O.
, 2009, “
An Experimental Investigation of the Cold Mass Fraction, Nozzle Number and Inlet Pressure Effects on Performance of Counter Flow Vortex Tube
,”
ASME J. Heat Transfer
0022-1481,
131
(
8
), p.
081701
.
You do not currently have access to this content.