This work investigates subcooled flow boiling of aqueous based alumina nanofluids in 510μm single microchannels with a focus on the effect of nanoparticles on the critical heat flux. The surface temperature distribution along the pipe, the inlet and outlet pressures and temperatures are measured simultaneously for different concentrations of alumina nanofluids and de-ionized water. To minimize the effect of nanoparticle depositions, all nanofluid experiments are performed on fresh microchannels. The experiment shows an increase of 51% in the critical heat flux under very low nanoparticle concentrations (0.1 vol %). Different burnout characteristics are observed between water and nanofluids, as well as different pressure and temperature fluctuations and flow pattern development during the stable boiling period. Detailed observations of the boiling surface show that nanoparticle deposition and a subsequent modification of the boiling surface are common features associated with nanofluids, which should be responsible for the different boiling behaviors of nanofluids.

1.
Zhang
,
L.
,
Wang
,
E. N.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
, 2005, “
Phase Change Phenomena in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1572
1582
.
2.
Lee
,
P. C.
, and
Pan
,
C.
, 2008, “
Boiling Heat Transfer and Two-Phase Flow of Water in a Single Shallow Microchannel With a Uniform or Diverging Cross Section
,”
J. Micromech. Microeng.
0960-1317,
18
, p.
025005
.
3.
Huh
,
C.
,
Kim
,
J.
, and
Kim
,
M. H.
, 2007, “
Flow Pattern Transition Instability During Flow Boiling in a Single Microchannel
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
5–6
), pp.
1049
1060
.
4.
Wang
,
G.
, and
Cheng
,
P.
, 2008, “
An Experimental Study of Flow Boiling Instability in a Single Microchannel
,”
Int. Commun. Heat Mass Transfer
0735-1933,
35
, pp.
1229
1234
.
5.
Huh
,
C.
, and
Kim
,
M. H.
, 2006, “
An Experimental Investigation of Flow Boiling in an Asymmetrically Heated Rectangular Microchannel
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
775
784
.
6.
Wojtan
,
L.
,
Revellin
,
R.
, and
Thome
,
J. R.
, 2006, “
Investigation of Saturated Critical Heat Flux in a Single, Uniformly Heated Microchannel
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
765
774
.
7.
Roday
,
A. P.
,
Borca-Tasçiuc
,
T.
, and
Jensen
,
M. K.
, 2008, “
The Critical Heat Flux Condition With Water in a Uniformly Heated Microtube
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
012901
.
8.
Shiferaw
,
D.
,
Karayiannis
,
T. G.
, and
Kenning
,
D. B. R.
, 2009, “
Flow Boiling in a 1.1 mm Tube With R134a: Experimental Results and Comparison With Model
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
331
341
.
9.
Wen
,
D. S.
,
Yan
,
Y.
, and
Kenning
,
D. B. R.
, 2004, “
Saturated Flow Boiling of Water in a Narrow Channel: Time-Averaged Heat Transfer Coefficients and Correlations
,”
Appl. Therm. Eng.
1359-4311,
24
, pp.
1207
1223
.
10.
Wen
,
D. S.
, and
Kenning
,
D. B. R.
, 2004, “
Two-Phase Pressure Drop of Water During Flow Boiling in a Vertical Narrow Channel
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
131
138
.
11.
Sobierska
,
E.
,
Kulenovic
,
R.
, and
Mertz
,
R.
, 2007, “
Heat Transfer Mechanism and Flow Pattern During Flow Boiling of Water in a Vertical Narrow Channel Experimental Results
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
1172
1181
.
12.
Sobierska
,
E.
,
Kulenovic
,
R.
,
Mertz
,
R.
, and
Groll
,
M.
, 2006, “
Experimental Results of Flow Boiling of Water in a Vertical Microchannel
,”
Exp. Therm. Fluid Sci.
0894-1777,
31
, pp.
111
119
.
13.
Martin-Callizo
,
C.
,
Palm
,
B.
, and
Owhaib
,
W.
, 2007, “
Subcooled Flow Boiling of R-134a in Vertical Channels of Small Diameter
,”
Int. J. Multiphase Flow
0301-9322,
33
, pp.
822
832
.
14.
Brutin
,
D.
,
Topin
,
F.
, and
Tadrist
,
L.
, 2003, “
Experimental Study of Unsteady Convective Boiling in Heated Minichannels
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2957
2965
.
15.
Kenning
,
D. B. R.
, and
Yan
,
Y.
, 2001, “
Saturated Flow Boiling of Water in a Narrow Channel: Experimental Investigation of Local Phenomena
,”
Chem. Eng. Res. Des.
0263-8762,
79
(
4
), pp.
425
436
.
16.
Wen
,
D. S.
,
Lin
,
G.
,
Vafaei
,
S.
, and
Zhang
,
K.
, 2009, “
Review of Nanofluids for Heat Transfer Applications
,”
Particuology
,
7
(
2
), pp.
141
150
.
17.
Wen
,
D. S.
,
Zhang
,
D. S.
, and
He
,
Y. R.
, 2009, “
Flow and Migration of Nanoparticles Through a Single Channel
,”
Heat and Mass Transfer
,
45
(
8
), pp.
1061
1067
.
18.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
, 2007, “
A Critical Review of Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
1364-0321,
11
, pp.
797
817
.
19.
Lee
,
J.
, and
Mudawar
,
I.
, 2007, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
452
463
.
20.
You
,
S. M.
,
Kim
,
J.
, and
Kim
,
K. H.
, 2003, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
0003-6951,
83
(
16
), pp.
3374
3376
.
21.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, 2003, “
Pool Boiling Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
851
862
.
22.
Bang
,
I. C.
, and
Chang
,
S. H.
, 2005, “
Boiling Heat Transfer Performance and Phenomena of Al2O3 Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2407
2419
.
23.
Kim
,
H. D.
,
Kim
,
J.
, and
Kim
,
M. H.
, 2007, “
Experimental Studies on CHF Characteristics of Nanofluids at Pool Boiling
,”
Int. J. Multiphase Flow
0301-9322,
33
, pp.
691
706
.
24.
Kim
,
S. J.
,
Bang
,
I. C.
, and
Buongiorno
,
J.
, 2006, “
Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
153107
.
25.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2007, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4105
4116
.
26.
Wang
,
C. H.
, and
Dhir
,
V. K.
, 1993, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
659
669
.
27.
Kim
,
S. J.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2008, “
Alumina Nanoparticles Enhance the Flow Boiling Critical Heat Flux of Water at Low Pressure
,”
ASME J. Heat Transfer
0022-1481,
130
(
4
), p.
044501
.
28.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2009, “
Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
043204
.
29.
Vassallo
,
P.
,
Kumar
,
R.
, and
D’Amico
,
S.
, 2004, “
Pool Boiling Heat Transfer Experiments in Silica–Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
407
411
.
30.
Wen
,
D. S.
, 2008, “
On the Role of Structural Disjoining Pressure to Boiling Heat Transfer With Thermal Nanofluids
,”
Journal of Nanoparticle Research
,
10
, pp.
1129
1140
.
31.
Wen
,
D. S.
,
Ding
,
Y.
, and
Williams
,
R.
, 2006, “
Pool Boiling Heat Transfer of Aqueous Based TiO2 Nanofluids
,”
J. Enhanced Heat Transfer
1065-5131,
13
, pp.
231
244
.
32.
Hall
,
D.
, and
Mudawar
,
I.
, 2000, “
Critical Heat Flux CHF for Water Flow in Tubes—II. Subcooled CHF Correlations
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2605
2640
.
33.
Kenning
,
D. B. R.
,
Wen
,
D. S.
,
Das
,
K. S.
, and
Wilson
,
K. S.
, 2006, “
Confined Growth of a Vapour Bubble in a Capillary Tube at Initially Uniform Superheat
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4653
4671
.
34.
Wen
,
D. S.
, 2008, “
Mechanisms of Thermal Nanofluids on Enhanced Critical Heat Flux (CHF)
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4958
4965
.
You do not currently have access to this content.