Mass transfer measurements on a flat plate downstream of a belt moving in the same direction of the freestream study the effect of the upstream shear on the heat (mass) transfer for four belt-freestream velocity ratios. With an increase in this ratio, the “virtual origin” of the turbulent boundary layer “moves” downstream toward the trailing edge of the belt. This is verified from the variation of the Stanton number versus the Reynolds number plots. As the “inner” region of the boundary layer is removed for a belt speed of uw=10m/s (freestream velocity uin15.4m/s), a corresponding local minimum in the variation of the Stanton number is observed. Downstream of this minimum, the characteristics of the turbulent boundary layer are restored and the data fall back on the empirical variation of Stanton with Reynolds number.

1.
Erickson
,
L.
,
Cha
,
L.
, and
Fan
,
L.
, 1966, “
The Cooling of a Moving Continuous Flat Sheet
,” (
AIChE Chemical Engineering Progress Symposium Series
).
2.
Tsou
,
F.
,
Sparrow
,
E.
, and
Goldstein
,
R.
, 1967, “
Flow and Heat Transfer in the Boundary Layer on a Continuous Moving Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
10
, pp.
219
235
.
3.
Abdelhafez
,
T.
, 1985, “
Skin Friction and Heat Transfer on a Continuous Flat Surface Moving in a Parallel Free Stream
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
6
), pp.
1234
1237
.
4.
Chappidi
,
P.
, and
Gunnerson
,
F.
, 1989, “
Analysis of Heat and Momentum Transport Along a Moving Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
32
(
7
), pp.
1383
1386
.
5.
Sparrow
,
E.
, and
Abraham
,
J.
, 2005, “
Universal Solutions for the Streamwise Variation of the Temperature of a Moving Sheet in the Presence of a Moving Fluid
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3047
3056
.
6.
Cortell
,
R.
, 2007, “
Flow and Heat Transfer in a Moving Fluid Over a Moving Flat Surface
,”
Theor. Comput. Fluid Dyn.
0935-4964,
21
(
6
), pp.
435
446
.
7.
Singh
,
S.
,
Rai
,
L.
,
Puri
,
P.
, and
Bhatnagar
,
A.
, 2005, “
Effect of Moving Surface on the Aerodynamic Drag of Road Vehicles
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
219
, pp.
127
134
.
8.
Ghosh
,
K.
, and
Goldstein
,
R.
, 2010, “
Effect of Upstream Shear on Flow and Heat (Mass) Transfer Over a Flat Plate Part I: Velocity Measurements
,”
ASME J. Heat Transfer
0022-1481,
132
, p.
101701
.
9.
Schmidt
,
E.
, 1929, “
Verdunstung und warmeugergang
,”
Gesund.-Ing.
0016-9277,
29
, pp.
525
529
.
10.
Nusselt
,
W.
, 1930, “
Wärmeübergang, Diffusion und Verdunstung
,”
ZAMM
0044-2267,
10
(
2
), pp.
105
121
.
11.
Goldstein
,
R.
, and
Cho
,
H.
, 1995, “
Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
(
4
), pp.
416
434
.
12.
Eckert
,
E.
,
Sakamoto
,
H.
, and
Simon
,
T.
, 2001, “
The Heat/Mass Transfer Analogy Factor, Nu/Sh, for Boundary Layers on Turbine Blade Profiles
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1223
1233
.
13.
Kline
,
S.
, and
McClintock
,
F.
, 1953, “
Describing Uncertainty in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
14.
Han
,
S.
, 2004. “
The Heat and Mass Transfer Analogy Factor, Nu/Sh for 2-d and 3-d Boundary Layers
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
15.
Kays
,
W.
, and
Crawford
,
M.
, 1993,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
16.
Eckert
,
E.
, and
Drake
,
R.
, 1972,
Analysis of Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.