Conventional ground surface insulation can be used to protect power line foundations in permafrost regions from the adverse effects of seasonal freezing and thawing cycles. But previous studies have shown ineffective thermal protection against the receding permafrost with conventional insulation. In this paper, an alternative thermal protection method (phase change materials (PCMs)) is analyzed and studied experimentally. Seasonal ground temperature variations are estimated by an analytical conduction model, with a sinusoidal ground surface temperature variation. A compensation function is introduced to predict temperature variations in the foundation, when the ground surface reaches a certain temperature profile. Measured data are acquired from an experimental test cell to simulate the tower foundation. With thermal energy storage in the PCM layer, the surface temperature of the soil was modified, leading to changes in temperature in the foundation. Measured temperature data show that the PCM thermal barrier effectively reduces the temperature variation amplitude in the foundation, thereby alleviating the seasonal freezing and thawing cycles. Different thermal effects of the PCM thermal barrier were obtained under different air temperature conditions. These are analyzed via melting degree hours and freezing degree hours, compared with a critical number of degree hours.

1.
U.S. Arctic Research Commission Permafrost Task Force, 2003, “
Climate Change, Permafrost, and Impacts on Civil Infrastructure
,”
U.S. Arctic Research Commission
, Special Report No. 01-03.
2.
Couture
,
R.
,
Robinson
,
S. D.
, and
Burgess
,
M. M.
, 2000, “
Climate Change, Permafrost Degradation, and Infrastructure Adaption: Preliminary Results From a Pilot Community Case Study in the Mackenzie Valley
,” Geological Survey of Canada, Current Research 2000-B2.
3.
Krarti
,
M.
,
Claridge
,
D. E.
, and
Kreider
,
J. F.
, 1990, “
ITPE Technique Applications to Time-Varying Three-Dimensional Ground-Coupling Problems
,”
ASME J. Heat Transfer
0022-1481,
112
(
4
), pp.
849
856
.
4.
Furmanski
,
P.
, and
Floryan
,
J. M.
, 1994, “
A Thermal Barrier With Adaptive Heat Transfer Characteristics
,”
ASME J. Heat Transfer
0022-1481,
116
(
2
), pp.
302
310
.
5.
Reid
,
R. L.
, and
Evans
,
A. L.
, 1983, “
Investigation of the Air Convection Pile as a Permafrost Protection Device
,”
Proceedings of 4th International Conference on Permafrost
,
National Academy Press
,
Washington, DC
, pp.
1048
1053
.
6.
Esch
,
D. C.
, 1986, “
Insulation Performance Beneath Roads and Airfields in Alaska
,”
Proceedings of the Fourth International Specialty Conference, ASCE
, Reston, VA, pp.
713
722
.
7.
Feklistov
,
V. N.
, and
Rusakov
,
N. L.
, 1996, “
Application of Foam Insulation for Remediation of Degraded Permafrost
,”
Cold Regions Sci. Technol.
0165-232X,
24
(
2
), pp.
205
212
.
8.
Staudzs
,
A.
, 1982, “
Frost and Permafrost: Effects and Remedial Work on Transmission Tower Foundations
,” Manitoba Hydro Report, Winnipeg, MB, Canada.
9.
Wen
,
Z.
,
Sheng
,
Y.
,
Ma
,
W.
, and
Qi
,
J.
, 2005, “
Evaluation of EPS Application to Embankment of Qinghai–Tibetan Railway
,”
Cold Regions Sci. Technol.
0165-232X,
41
(
3
), pp.
235
247
.
10.
Sheng
,
Y.
,
Wen
,
Z.
,
Ma
,
W.
,
Liu
,
Y.
,
Qi
,
J.
, and
Wu
,
J.
, 2006, “
Long-Term Evaluations of Insulated Road in the Qinghai-Tibetan Plateau
,”
Cold Regions Sci. Technol.
0165-232X,
45
(
1
), pp.
23
30
.
11.
Bardy
,
E. R.
,
Mollendorf
,
J. C.
, and
Pendergast
,
D. R.
, 2007, “
Thermal Conductivity and Compressive Strain of Aerogel Insulation Blankets Under Applied Hydrostatic Pressure
,”
ASME J. Heat Transfer
0022-1481,
129
(
2
), pp.
232
235
.
12.
Daigle
,
L.
, and
Zhao
,
J. Q.
, 1999, “
Effectiveness of Rigid Insulation for Thermal Protection of Buried Water Pipes in Rock Trenches
,”
CSCE 1999 Annual Conference—First Cold Regions Specialty Conference
, pp.
389
398
.
13.
Khudhair
,
A. M.
, and
Farid
,
M. M.
, 2004, “
A Review on Energy Conservation in Building Applications With Thermal Storage by Latent Heat Using Phase Change Materials
,”
Energy Convers. Manage.
0196-8904,
45
(
2
), pp.
263
275
.
14.
Medina
,
M. A.
,
King
,
J. B.
, and
Zhang
,
M.
, 2008, “
On the Heat Transfer Rate Reduction of Structural Insulated Panels (SIPs) Outfitted With Phase Change Materials (PCMs)
,”
Energy
0360-5442,
33
(
4
), pp.
667
678
.
15.
Saha
,
S. K.
,
Srinivasan
,
K.
, and
Dutta
,
P.
, 2008, “
Studies on Optimum Distribution of Fins in Heat Sinks Filled With Phase Change Materials
,”
ASME J. Heat Transfer
0022-1481,
130
(
3
), p.
034505
.
16.
Weinstein
,
R. D.
,
Kopec
,
T. C.
,
Fleischer
,
A. S.
,
D’Addio
,
E.
, and
Bessel
,
C. A.
, 2008, “
The Experimental Exploration of Embedding Phase Change Materials With Graphite Nanofibers for the Thermal Management of Electronics
,”
ASME J. Heat Transfer
0022-1481,
130
(
4
), p.
042405
.
17.
Al-Hallaj
,
S.
, and
Selman
,
J. R.
, 2002, “
Thermal Modeling of Secondary Lithium Batteries for Electric Vehicle/Hybrid Electric Vehicle Applications
,”
J. Power Sources
0378-7753,
110
(
2
), pp.
341
348
.
18.
Faghri
,
A.
, and
Guo
,
Z.
, 2005, “
Challenges and Opportunities of Thermal Management Issues Related to Fuel Cell Technology and Modeling
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
19–20
), pp.
3891
3920
.
19.
Naterer
,
G. F.
, 2003,
Heat Transfer in Single and Multiphase Systems
,
CRC
,
Boca Raton, FL
.
20.
Duan
,
X.
, and
Naterer
,
G. F.
, 2008, “
Ground Thermal Response to Heat Conduction in a Power Transmission Tower Foundation
,”
Heat Mass Transfer
0947-7411,
44
(
5
), pp.
547
558
.
21.
Duan
,
X.
, and
Naterer
,
G. F.
, 2008, “
Ground Heat Transfer From a Varying Line Source With Seasonal Temperature Fluctuations
,”
ASME J. Heat Transfer
0022-1481,
130
(
11
), p.
111302
.
22.
Duan
,
X.
, and
Naterer
,
G. F.
, 2009, “
Heat Conduction With Seasonal Freezing and Thawing in an Active Layer Near a Tower Foundation
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
7–8
), pp.
2068
2078
.
23.
El-Din
,
M. M. S.
, 1999, “
On the Heat Flow Into the Ground
,”
Renewable Energy
0960-1481,
18
(
4
), pp.
473
490
.
24.
Zeng
,
H. Y.
,
Diao
,
N. R.
, and
Fang
,
Z. H.
, 2002, “
A Finite Line-Source Model for Boreholes in Geothermal Heat Exchangers
,”
Heat Transfer Asian Res.
1099-2871,
31
(
7
), pp.
558
567
.
25.
Ingersoll
,
L. R.
,
Zobe
,
O. J.
, and
Ingersoll
,
A. C.
, 1954,
Heat Conduction With Engineering, Geological and Other Applications
,
University of Wisconsin Press
,
Madison, WI
.
26.
Carslaw
,
H. S.
, and
Jeager
,
J. C.
, 1993,
Conduction of Heat in Solids
,
2nd ed.
,
Oxford University Press
,
New York
.
28.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.