First, the electron-phonon interaction model, which has recently been developed by authors for thermal predictions within the silicon devices in micro/nanoscales, is verified through the comparison with the experimental measurement of average temperature rise in the channel region of a silicon-on-insulator (SOI) transistor. The effect of the silicon layer thickness of the SOI transistor on phonon thermal characteristics is also investigated. It is found that the thickness effect on the peak temperature of the optical phonon mode in the hot spot region is negligible due to its very low group velocity. Thus the acoustic phonons in a specific frequency band, which has the highest scattering rate with the optical phonons, experience relatively less reduction in the peak temperature as the silicon layer thickness increases. Second, the electron-phonon interaction model is applied to the transient thermal transport simulation during the electrostatic discharge (ESD) event in an n-type metal-oxide-semiconductor (NMOS) transistor. The evolution of the peak temperature in the hot spot region during the ESD event is simulated and compared with that obtained by the previous full phonon dispersion model, which treats the electron-phonon scattering as a volumetric heat source. The results show that the lower group velocity acoustic phonon modes (i.e., higher frequency) and optical mode of negligible group velocity acquire high energy density from electrons during the ESD event, which might cause the devices melting problem. The heat transfer rates by individual phonon modes are also examined, and it is found that the key parameter to determine the phonon heat transfer rate during the ESD event is the product of the phonon specific heat and the scattering rates with higher energy density phonons in the hot spot region.

1.
Vinson
,
J. E.
, and
Liou
,
J. J.
, 1998, “
Electrostatic Discharge in Semiconductor Devices: An Overview
,”
Proc. IEEE
0018-9219,
86
(
2
), pp.
399
418
.
2.
Duvvury
,
C.
, and
Amerasekera
,
A.
, 1993, “
ESD: A Pervasive Reliability Concern for IC Technologies
,”
Proc. IEEE
0018-9219,
81
(
5
), pp.
690
702
.
3.
Amerasekera
,
A.
,
Van Roozendaal
,
L.
,
Bruines
,
J.
, and
Kuper
,
F.
, 1991, “
Characterization and Modeling of Second Breakdown in NMOST’s for the Extraction of ESD-Related Process and Design Parameters
,”
IEEE Trans. Electron Devices
0018-9383,
38
(
9
), pp.
2161
2168
.
4.
Lee
,
J. C.
,
Hoque
,
A.
,
Croft
,
G. D.
,
Liou
,
J. J.
,
Young
,
R.
, and
Bernier
,
J. C.
, 2000, “
An Electrostatic Discharge Failure Mechanism in Semiconductor Devices, With Applications to Electrostatic Discharge Measurements Using Transmission Line Pulsing Technique
,”
Solid-State Electron.
0038-1101,
44
(
10
), pp.
1771
1781
.
5.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 2001, “
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
0022-1481,
123
(
1
), pp.
130
137
.
6.
Sverdrup
,
P. G.
, 2000, “
Simulation and Thermometry of Sub-Continuum Heat Transport in Semiconductor Devices
,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University.
7.
Sverdrup
,
P. G.
,
Banerjee
,
K.
,
Dai
,
C.
,
Shih
,
W.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2000, “
Sub-Continuum Thermal Simulations of Deep Sub-Micron Devices Under ESD Conditions
,”
2000 International Conference on Simulation of Semiconductor Processes and Devices, SISPAD
, Seattle, WA, pp.
54
57
.
8.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2006, “
Boltzmann Transport Equation-Based Thermal Modeling Approaches for Hotspots in Microelectronics
,”
Heat Mass Transfer
0947-7411,
42
(
6
), pp.
478
491
.
9.
Jin
,
J. S.
, and
Lee
,
J. S.
, 2007, “
Electron-Phonon Interaction Model and Prediction of Thermal Energy Transport in SOI Transistor
,”
J. Nanosci. Nanotechnol.
1533-4880,
7
(
11
), pp.
4094
4100
.
10.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2005, “
Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistor
,”
ASME J. Heat Transfer
0022-1481,
127
(
7
), pp.
713
723
.
11.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2004, “
Submicron Heat Transfer Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
126
(
6
), pp.
946
955
.
12.
Tien
,
C. L.
,
Majumdar
,
A.
, and
Gerner
,
F. M.
, 1998,
Microscale Energy Transport
,
Taylor & Francis
,
Washington, D.C
.
13.
Bube
,
R. H.
, 1974,
Electronic Properties of Crystalline Solids
,
Academic
,
New York
.
14.
Long
,
D.
, 1960, “
Scattering of Conduction Electrons by Lattice Vibrations in Silicon
,”
Phys. Rev.
0031-899X,
120
(
6
), pp.
2024
2032
.
15.
Lundstrom
,
M.
, 2000,
Fundamentals of Carrier Transport
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
16.
Harrison
,
W. A.
, 1956, “
Scattering of Electrons by Lattice Vibrations in Nonpolar Crystals
,”
Phys. Rev.
0031-899X,
104
(
5
), pp.
1281
1290
.
17.
Pop
,
E.
,
Rowlette
,
J. A.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2005, “
Joule Heating Under Quasi-Ballistic Transport Conditions in Bulk and Strained Silicon Devices
,”
2005 International Conference on Simulation of Semiconductor Processes and Devices, SISPAD
, Tokyo, Japan, pp.
307
310
.
18.
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2004, “
Analytic Band Monte Carlo Model for Electron Transport in Si Including Acoustic and Optical Phonon Dispersion
,”
J. Appl. Phys.
0021-8979,
96
(
9
), pp.
4998
5005
.
19.
Mousty
,
F.
,
Ostoja
,
P.
, and
Passari
,
L.
, 1974, “
Relationship Between Resistivity and Phosphorus Concentration
,”
J. Appl. Phys.
0021-8979,
45
(
10
), pp.
4576
4580
.
20.
Goodson
,
K. E.
,
Flik
,
M. I.
,
Su
,
L. T.
, and
Antoniadis
,
D. A.
, 1995, “
Prediction and Measurement of Temperature Fields in Silicon-on-Insulator Electronic Circuits
,”
ASME J. Heat Transfer
0022-1481,
117
(
3
), pp.
574
581
.
21.
Barraud
,
S.
,
Clavelier
,
L.
, and
Ernst
,
T.
, 2005, “
Electron Transport in Thin SOI, Strained-SOI and GeOI MOSFET by Monte-Carlo Simulation
,”
Solid-State Electron.
0038-1101,
49
(
7
), pp.
1090
1097
.
22.
Sinha
,
S.
,
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2006, “
Non-Equilibrium Phonon Distributions in Sub-100 nm Silicon Transistors
,”
ASME J. Heat Transfer
0022-1481,
128
(
7
), pp.
638
647
.
23.
International Technology Roadmap for Semiconductors (ITRS), http://www.public.itrs.nethttp://www.public.itrs.net.
24.
Kwon
,
O.
, and
Majumdar
,
A.
, 2003, “
Cross-Sectional Thermal Imaging of a Metal-Oxide-Semiconductor Field-Effect Transistor
,”
Microscale Thermophys. Eng.
1089-3954,
7
(
4
), pp.
349
354
.
25.
Mazumder
,
S.
, and
Majumdar
,
A.
, 2001, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
123
(
4
), pp.
749
759
.
26.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
New York
.
27.
Gaskell
,
P. H.
, and
Lau
,
A. K. C.
, 1988, “
Curvature-Compensated Convective Transport: SMART, A New Boundedness-Preserving Transport Algorithm
,”
Int. J. Numer. Methods Fluids
0271-2091,
8
(
6
), pp.
617
641
.
28.
Ziman
,
J. M.
, 1960,
Electron and Phonon
,
Oxford University Press
,
London
.
29.
Pop
,
E.
, 2004, “
Self-Heating and Scaling of Thin Body Transistors
,” Ph.D. thesis, Department of Electrical Engineering, Stanford University.
You do not currently have access to this content.