CO2 flow boiling heat transfer coefficients and pressure drop in a 3.5mm horizontal smooth tube are presented. Also, flow patterns were visualized and studied at adiabatic conditions in a 3mm glass tube located immediately after a heat transfer section. Heat was applied by a secondary fluid through two brass half cylinders to the test section tubes. This research was performed at evaporation temperatures of 15°C and 30°C, mass fluxes of 200kgm2s and 400kgm2s, and heat flux from 5kWm2 to 15kWm2 for vapor qualities ranging from 0.1 to 0.8. The CO2 heat transfer coefficients indicated the nucleate boiling dominant heat transfer characteristics such as the strong dependence on heat fluxes at a mass flux of 200kgm2s. However, enhanced convective boiling contribution was observed at 400kgm2s. Surface conditions for two different tubes were investigated with a profilometer, atomic force microscope, and scanning electron microscope images, and their possible effects on heat transfer are discussed. Pressure drop, measured at adiabatic conditions, increased with the increase of mass flux and quality, and with the decrease of evaporation temperature. The measured heat transfer coefficients and pressure drop were compared with general correlations. Some of these correlations showed relatively good agreements with measured values. Visualized flow patterns were compared with two flow pattern maps and the comparison showed that the flow pattern maps need improvement in the transition regions from intermittent to annular flow.

1.
Bredesen
,
A. M.
,
Hafner
,
A.
,
Pettersen
,
J.
,
Neksa
,
P.
, and
Aflekt
,
P. K.
, 1997, “
Heat Transfer and Pressure Drop for In-Tube Evaporation of CO2
,”
Proceedings of the International Conference on Heat Transfer Issues in Natural Refrigerants
,
University of Maryland
,
College Park, MD
, pp.
1
15
.
2.
Høgaard Knudsen
,
H. J.
, and
Jensen
,
P. H.
, 1997, “
Heat Transfer Coefficient for Boiling Carbon Dioxide
,”
Proceedings of the International R&D on Heat Pump, Air Conditioning and Refrigeration Systems
,
Gatlinburg, TN
, pp.
113
122
.
3.
Park
,
C. Y.
, and
Hrnjak
,
P. S.
, 2005, “
Flow Boiling Heat Transfer of CO2 at Low Temperatures in a Horizontal Smooth Tube
,”
J. Heat Transfer
0022-1481,
127
, pp.
1305
1312
.
4.
Park
,
C. Y.
, and
Hrnjak
,
P. S.
, 2007, “
CO2 and R410A Flow Boiling Heat Transfer, Pressure Drop, and Flow Pattern at Low Temperatures in a Horizontal Smooth Tube
,”
Int. J. Refrig.
0140-7007,
30
, pp.
166
178
.
5.
Shah
,
M. M.
, 1982, “
Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study
,”
ASHRAE Trans.
0001-2505,
88
, pp.
185
196
.
6.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
, 1986, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
0017-9310,
29
, pp.
351
358
.
7.
Yoon
,
S. H.
,
Cho
,
E. S.
,
Hwang
,
Y. W.
,
Kim
,
M. S.
,
Min
,
K.
, and
Kim
,
Y.
, 2004, “
Characteristics of Evaporative Heat Transfer and Pressure Drop of Carbon Dioxide and Correlation Development
,”
Int. J. Refrig.
0140-7007,
27
, pp.
111
119
.
8.
Müller-Steinhagen
,
H.
, and
Heck
,
K.
, 1986, “
A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes
,”
Chem. Eng. Process.
0255-2701,
20
, pp.
297
308
.
9.
Pettersen
,
J.
, 2004, “
Flow Boiling of CO2 in Microchannel Tubes
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
111
121
.
10.
Friedel
,
L.
, 1979, “
Improved Friction Pressure Correlations for Horizontal and Vertical Two-Phase Pipe Flow
,”
The European Two-Phase Flow Group Meeting
,
Ispra, Italy
, Paper No. E2.
11.
Thome
,
J. R.
, and
Ribatski
,
G.
, 2005, “
State-of-Art of Two-Phase Flow and Flow Boiling Heat Transfer and Pressure Drop of CO2 in Macro- and Micro-Channels
,”
Int. J. Refrig.
0140-7007,
28
, pp.
1149
1168
.
12.
Yun
,
R.
, and
Kim
,
Y.
, 2004, “
Flow Regimes for Horizontal Two-Phase Flow of CO2 in a Heated Narrow Rectangular Channel
,”
Int. J. Multiphase Flow
0301-9322,
30
, pp.
1259
1270
.
13.
Schael
,
A.
, and
Kind
,
M.
, 2005, “
Flow Pattern and Heat Transfer Characteristics During Flow Boiling of CO2 in a Horizontal Micro Fin Tube and Comparison With Smooth Tube Data
,”
Int. J. Refrig.
0140-7007,
28
, pp.
1186
1195
.
14.
Jang
,
J.
, and
Hrnjak
,
P. S.
, 2003, “
Flow Regimes and Heat Transfer in Condensation of Carbon Dioxide at Low Temperatures
,”
Proceedings of the Second International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
,
Victoria Falls, Zambia
, Paper No. HP1.
15.
Weisman
,
J.
,
Duncan
,
D.
,
Gibson
,
J.
, and
Crawford
,
T.
, 1979, “
Effect of Fluid Properties and Pipe Diameter on Two-Phase Flow Patterns in Horizontal Lines
,”
Int. J. Multiphase Flow
0301-9322,
5
, pp.
437
462
.
16.
Wojtan
,
L.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
, 2005, “
Investigating of Flow Boiling in Horizontal Tubes: Part I—A New Adiabatic Two-Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2955
2969
.
17.
Yu
,
J.
,
Momoki
,
S.
, and
Koyama
,
S.
, 1999, “
Experimental Study of Surface Effect on Flow Boiling Heat Transfer in Horizontal Smooth Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
1909
1918
.
18.
Span
,
R.
, and
Wagner
,
W.
, 1996, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From Triple-Point Temperature to 1100K at Pressures up to 800MPa
,”
J. Phys. Chem. Ref. Data
0047-2689,
25
, pp.
1509
1596
.
19.
Jang
,
J.
, and
Hrnjak
,
P.
, 2004, “
Condensation of R744 at Low Temperatures
,” ACRC Report No. CR56,
University of Illinois at Urbana-Champaign
, pp.
80
84
.
20.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
21.
Kandlikar
,
S. G.
, 1990, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
J. Heat Transfer
0022-1481,
112
, pp.
219
228
.
22.
Wattelet
,
J. P.
,
Chato
,
J. C.
,
Christoffersen
,
B. R.
,
Gaibel
,
J. A.
,
Ponchner
,
M.
,
Kenny
,
P. J.
,
Shimon
,
R. L.
,
Villaneuva
,
T. C.
,
Rhines
,
N. L.
,
Sweeney
,
K. A.
,
Allen
,
D. G.
, and
Heshberger
,
T. T.
, 1994, “
Heat Transfer Flow Regimes of Refrigerants in a Horizontal-Tube Evaporator
,” ACRC Report No. TR-55,
University of Illinois at Urbana-Champaign
.
23.
Thome
,
J. R.
, and
El Hajal
,
J.
, 2004, “
Flow Boiling Heat Transfer to Carbon Dioxide: General Prediction Method
,”
Int. J. Refrig.
0140-7007,
27
, pp.
294
301
.
24.
Rouhani
,
Z.
, and
Axelsson
,
E.
, 1970, “
Calculation of Volume Void Fraction in the Subcooled and Quality Region
,”
Int. J. Heat Mass Transfer
0017-9310,
13
, pp.
383
393
.
25.
Okawa
,
T.
,
Kitahara
,
T.
,
Yoshida
,
K.
,
Matsumoto
,
T.
, and
Kataoka
,
I.
, 2002, “
New Entrainment Correlation in Annular Two-Phase Flow Applicable to Wide Range of Flow Condition
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
87
98
.
26.
Gorenflo
,
D.
, 1993, “
Pool Boiling
,”
VDI Gesellschaft Verfahrenstechnic und Chemiengenieurwesen
,
VDI
,
Dusseldorf
, pp.
Ha
4–Ha
18
, English translation.
27.
Roy Chowdhury
,
S. K.
, and
Winterton
,
R. H. S.
, 1985, “
Surface Effects in Pool Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
1881
1889
.
28.
Luke
,
A.
, 1997, “
Pool Boiling Heat Transfer from Horizontal Tubes with Different Surface Roughness
,”
Int. J. Refrig.
0140-7007,
20
, pp.
561
574
.
29.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
, 1998, “
Flow Boiling in Horizontal Tubes: Part 1—Development of an Adiabatic Two-Phase Flow Pattern Map
,”
J. Heat Transfer
0022-1481,
120
, pp.
140
147
.
30.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
, 1998, “
Flow Boiling in Horizontal Tubes: Part 3—Development of a New Heat Transfer Model Based on Flow Pattern
,”
J. Heat Transfer
0022-1481,
120
, pp.
156
165
.
31.
Cheng
,
L.
,
Ribatski
,
G.
,
Wojtan
,
L.
, and
Thome
,
J. R.
, 2006, “
New Flow Boiling Heat Transfer Model and Flow Pattern Map for Carbon Dioxide Evaporating Inside Horizontal Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4082
4094
.
32.
Wojtan
,
L.
,
Ursebbacher
,
T.
, and
Thome
,
J. R.
, 2005, “
Investigation of Flow Boiling in Horizontal Tubes: Part II—Development of a New Heat Transfer Model for Stratified-Wavy, Dryout and Mist Flow Regimes
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2970
2985
.
33.
Liu
,
Z.
, and
Winterton
,
R. H. S.
, 1991, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool Boiling Equation
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
2759
2766
.
34.
Kandlikar
,
S. G.
, 2002, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
389
407
.
35.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
, 1949, “
Proposed Correlation of Data for Isothermal Two-Phase Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
0360-7275,
45
, pp.
39
45
.
36.
Chisholm
,
D.
, 1973, “
Pressure Gradients due to Friction During the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
16
, pp.
347
358
.
37.
Grönnerud
,
R.
, 1979, “
Investigation of Liquid Hold-Up, Flow Resistance and Heat Transfer in Circulation Type Evaporators, Part IV: Two-Phase Flow Resistance in Boiling Refrigerants
,” Bull. De l’Inst. Du Froid, Annexe 1972-1.
38.
Ould Didi
,
M. B.
,
Kattan
,
N.
, and
Thome
,
J. R.
, 2002, “
Prediction of Two-Phase Pressure Gradients of Refrigerants in Horizontal Tubes
,”
Int. J. Refrig.
0140-7007,
25
, pp.
935
947
.
39.
Wang
,
C. C.
,
Chiang
,
C.
,
Lin
,
S.
, and
Lu
,
D.
, 1997, “
Two-Phase Flow Pattern for R-410a Inside of a 6.5mm Smooth Tube
,”
ASHRAE Trans.
0001-2505,
103
, pp.
803
812
.
This content is only available via PDF.
You do not currently have access to this content.