Superinsulating materials are currently of interest because the heating and cooling of houses and offices are responsible for an important part of CO2 emissions. In this study, we aim at modeling the radiative transfer in nanoporous silica matrices that are the principal components of nanoporous superinsulating materials. We first elaborate samples from different pyrogenic amorphous silica powders that slightly differ one from another in terms of specific surface, nanoparticle diameter, and composition. The various samples are optically characterized using two spectrometers operating on the wavelength range (250 nm; 20μm). Once the hemispherical transmittance and reflectance spectra are measured, we deduce the radiative properties using a parameter identification technique. Then, as the considered media are made of packed quasispherical nanoparticles, we try to model their radiative properties using the original Mie theory. To obtain a good agreement between experiment and theory on a large part of the wavelength range, we have to consider scatterers that are up to five times larger than the primary nanoparticles; this is attributed to the fact that the scatterers are not the nanoparticles but aggregates of nanoparticles that are constituted during the fabrication process of the powders. Nevertheless, in the small wavelength range (λ smaller than 1μm), we can never get a satisfactory agreement using the Mie theory. This disagreement is attributed to the fact that the original Mie theory does not take into account the nanostructure of the aggregates. So we have developed a code based on the discrete dipole approximation that improves the modeling results in the small wavelength range, basing our computations on aggregates generated using the diffusion-limited cluster-cluster aggregation algorithm in order to ensure a fractal dimension close to what is usually found with aggregates of silica nanoparticles.

1.
Enguehard
,
F.
, 2007, “
Multi-Scale Modelling of Radiation Heat Transfer Through Nanoporous Superinsulating Materials
,”
Int. J. Thermophys.
0195-928X,
28
(
5
), pp.
1693
1717
.
2.
Büttner
,
D.
, and
Fricke
,
J.
, 1985, “
Thermal Conductivity of Evacuated Highly Transparent Silica Aerogel
,”
Int. J. Sol. Energy
0142-5919,
3
(
2
), pp.
89
94
.
3.
Kamiuto
,
K.
, 1990, “
Combined Conductive and Radiative Heat Transfer Through Evacuated Silica Aerogel Layers
,”
Int. J. Sol. Energy
0142-5919,
9
(
1
), pp.
23
33
.
4.
Heinemann
,
U.
,
Caps
,
R.
, and
Fricke
,
J.
, 1996, “
Radiation-Conduction Interaction: An Investigation on Silica Aerogels
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
10
), pp.
2115
2130
.
5.
Rochais
,
D.
,
Domingues
,
G.
, and
Enguehard
,
F.
, “
Numerical Simulation of Thermal Conduction and Diffusion Through Nanoporous Superinsulating Materials
,”
Proceedings of the European Conference on Thermophysical Properties
, Bratislava, Slovak Republic.
6.
Coquard
,
R.
, and
Quenard
,
D.
, “
Modeling of Heat Transfer in Nanoporous Silica
,”
Proceedings of the Eighth International Vacuum Insulation Symposium
, Würzburg, Germany.
7.
Caps
,
R.
, and
Fricke
,
J.
, 2000, “
Thermal Conductivity of Opacified Powder Filler Materials for Vacuum Insulations
,”
Int. J. Thermophys.
0195-928X,
21
(
2
), pp.
445
452
.
11.
McKellar
,
B. H. J.
, and
Box
,
M. A.
, 1981, “
The Scaling Group of the Radiative Transfer Equation
,”
J. Atmos. Sci.
0022-4928,
38
, pp.
1063
1068
.
12.
Davison
,
B.
, 1957,
Neutron Transport Theory
,
Oxford University Press
,
London
.
13.
Dombrovsky
,
L. A.
, 1996,
Radiation Heat Transfer in Disperse Systems
,
Begell House
,
New York
.
14.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
New York
.
15.
Davis
,
K. M.
, and
Tomozawa
,
M.
, 1996, “
An Infrared Spectroscopic Study of Water-Related Species in Silica Glasses
,”
J. Non-Cryst. Solids
0022-3093,
201
, pp.
177
198
.
16.
Palik
,
E. D.
, ed., 1991,
Handbook of Optical Constants of Solids
,
Academic
,
Boston, MA
.
17.
Pankove
,
J. I.
,
Zanzucchi
,
P. J.
,
Magee
,
C. W.
, and
Lucovsky
,
G.
, 1985, “
Hydrogen Localization Near Boron in Silicon
,”
Appl. Phys. Lett.
0003-6951,
46
(
4
), pp.
421
423
.
18.
van de Hulst
,
H. C.
, 1957,
Light Scattering by Small Particles
,
Wiley
,
New York
.
19.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 1983,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
20.
Tien
,
C. L.
, and
Drolen
,
B. L.
, 1987, “
Thermal Radiation in Particulate Media With Dependent and Independent Scattering
,”
Annu. Rev. Numer. Fluid Mech. Heat Transfer
0892-6883,
1
, pp.
1
32
.
21.
Chu
,
H. S.
,
Stretton
,
A. J.
, and
Tien
,
C. L.
, 1988, “
Radiative Heat Transfer in Ultra-Fine Powder Insulations
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
8
), pp.
1627
1634
.
22.
Kumar
,
S.
, and
Tien
,
C. L.
, 1990, “
Dependent Absorption and Extinction of Radiation by Small Particles
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
178
185
.
23.
Prasher
,
R.
, 2007, “
Thermal Radiation in Dense Nano- and Microparticulate Media
,”
J. Appl. Phys.
0021-8979,
102
, p.
074316
.
24.
Mishchenko
,
M.
,
Travis
,
L.
, and
Lacis
,
A.
, 2006,
Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering
,
Cambridge University Press
,
New York
.
25.
Purcell
,
E.
, and
Pennypacker
,
C. R.
, 1973, “
Scattering and Absorption of Light by Nonspherical Dielectric Grains
,”
Astrophys. J.
0004-637X,
186
, pp.
705
714
.
26.
Draine
,
B. T.
, 1988, “
The Discrete-Dipole Approximation and Its Application to Interstellar Graphite Grains
,”
Astrophys. J.
0004-637X,
333
, pp.
848
872
.
27.
Draine
,
B. T.
, and
Flatau
,
P. J.
, 1994, “
Discrete-Dipole Approximation for Scattering Calculations
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis
1084-7529,
11
(
4
), pp.
1491
1499
.
28.
Jackson
,
J. D.
, 1999,
Classical Electrodynamics
, 3rd ed.,
Wiley
,
New York
.
29.
Draine
,
B. T.
, and
Goodman
,
J.
, 1993, “
Beyond Clausius-Mossotti: Wave Propagation on a Polarizable Point Lattice and the Discrete-Dipole Approximation
,”
Astrophys. J.
0004-637X,
405
, pp.
685
697
.
30.
Dungey
,
C. E.
, and
Bohren
,
C. F.
, 1991, “
Light Scattering by Nonspherical Particles: A Refinement to the Coupled-Dipole Method
,”
J. Opt. Soc. Am. A
0740-3232,
8
, pp.
81
87
.
31.
Okamoto
,
H.
, 1995, “
Light Scattering by Clusters: The A1-Term Method
,”
Opt. Rev.
1340-6000,
2
(
6
), pp.
407
412
.
32.
Okamoto
,
H.
, and
Xu
,
Y.
, 1998, “
Light Scattering by Irregular Interplanetary Dust Particles
,”
Earth, Planets Space
1343-8832,
50
, pp.
577
585
.
33.
Doyle
,
W. T.
, 1989, “
Optical Properties of a Suspension of Metal Spheres
,”
Phys. Rev. B
0163-1829,
39
(
14
), pp.
9852
9858
.
34.
Legrand
,
A. P.
, 1998,
The Surface Properties of Silicas
,
Wiley
,
New York
, Chap. 2, pp.
83
143
.
35.
Meakin
,
P.
, 1983, “
Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation
,”
Phys. Rev. Lett.
0031-9007,
51
(
13
), pp.
1119
1122
.
36.
Kolb
,
M.
,
Botet
,
R.
, and
Jullien
,
R.
, 1983, “
Scaling of Kinetically Growing Clusters
,”
Phys. Rev. Lett.
0031-9007,
51
(
13
), pp.
1123
1126
.
37.
Chen
,
G.
, 1996, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
539
545
.
38.
Petrov
,
V. A.
, and
Stepanov
,
S. V.
, 1975, “
Radiation Characteristics of Quartz Glasses Spectral Radiating Power
,”
Teplofiz. Vys. Temp.
0040-3644,
13
(
2
), pp.
335
345
.
39.
Ehrburger
,
F.
, and
Jullien
,
R.
, 1988, “
Studies of Surface Science and Catalysis
,”
Characterization of Porous Solids I
, Vol.
39
,
K. K.
Unger
,
J.
Rouquerol
,
K. S. W.
Sing
, and
H.
Karl
, eds.,
Elsevier
,
Amsterdam
, pp.
441
449
.
40.
Hurd
,
A. J.
,
Schaefer
,
D. W.
, and
Martin
,
J. E.
, 1987, “
Surface and Mass Fractals in Vapor-Phase Aggregates
,”
Phys. Rev. A
1050-2947,
35
(
5
), pp.
2361
2364
.
41.
Freltoft
,
T.
,
Kjems
,
J. K.
, and
Sinha
,
S. K.
, 1986, “
Power-Law Correlations and Finite-Size Effects in Silica Particle Aggregates Studied by Small-Angle Neutron Scattering
,”
Phys. Rev. B
0163-1829,
33
(
1
), pp.
269
275
.
42.
Witten
,
T. A.
, and
Sander
,
L. M.
, 1981, “
Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon
,”
Phys. Rev. Lett.
0031-9007,
47
(
19
), pp.
1400
1403
.
43.
1993, “
Untreated Fumed Silica: Properties and Functions
,” Cabot Corporation brochure.
You do not currently have access to this content.