Experiments have been performed to study natural convection flow and heat transfer in a horizontal annulus when a square heating element is positioned at different locations on the inner insulated cylinder. The annulus is filled with water and has cylinder to cylinder diameter ratio of 3. The square heating element is small and has the width to annulus gap width ratio of 1/6. The range of Rayleigh number studied is approximately from 1.9×106 to 3.3×107. It has been found that the flow pattern, the temperature distribution around the inner cylinder wall, and the local heat transfer rate around the outer cylinder are very sensitive to the location of the heating element. The heating element Nusselt numbers at various locations on the inner cylinder are obtained and well correlated against the Rayleigh number to the 1/3 powers. A maximum in the correlation parameter C is obtained when the heating element is placed 90 deg from the bottom.

1.
Kennedy
,
K. J.
, and
Kanehl
,
J.
, 1983,“
Free convection in Tilted Enclosures
,”
Heat Transfer in Electronic Equipment
, Vol.
28
,
S.
Oktay
and
A.
BarCohin
, eds.,
ASME
,
New York
, pp.
43
47
.
2.
Ha
,
M. Y.
,
Jung
,
M. J.
, and
Kim
,
Y. S.
, 1999, “
Numerical Study on Transient Heat Transfer and Fluid Flow of Natural Convection in an Enclosure With a Heat-Generating Conducting Body
,”
Numer. Heat Transfer, Part A
1040-7782,
35
, pp.
415
433
.
3.
Gebhart
,
B.
,
Yaluria
,
Y.
,
Mahajan
,
R. L.
, and
Sammakia
,
B.
, 1988,
Buoyancy-Induced Flows and Transport
,
Hemisphere
,
Washington, DC
.
4.
Yang
,
K. T.
, 1987, “
Natural Convection in Enclosures
,”
Handbook of Single Phase Convection Heat Transfer
,
Wiley
,
New York
.
5.
Ostrach
,
S.
, 1988, “
Natural Convection in Enclosures
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
1175
1190
.
6.
Fant
,
D. B.
,
Prusa
,
J.
, and
Rothmayer
,
A. P.
, 1990, “
Unsteady Multicellular Natural Convection in a Narrow Horizontal Cylindrical Annulus
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
379
387
.
7.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
, 1976, “
An Experimental and Theoretical Study of Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
J. Fluid Mech.
0022-1120,
74
, pp.
695
719
.
8.
Yoo
,
J. -S.
, 1996, “
Dual Steady Solutions in Natural Convection Between Horizontal Concentric Cylinders
,”
Int. J. Heat Fluid Flow
0142-727X,
17
(
6
), pp.
587
593
.
9.
Castrejon
,
A.
, and
Spalding
,
D. B.
, 1988, “
An Experimental and Theoretical Study of Transient Free-Convection Flow Between Horizontal Concentric Cylinders
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
273
284
.
10.
Charrier-Mojtabi
,
M. C.
,
Mojtabi
,
A.
, and
Caltagirone
,
J. P.
, 1979, “
Numerical Solution of a Flow Due to Natural Convection in Horizontal Cylindrical Annulus
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
171
173
.
11.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
, 1976, “
Correlating Equation for Natural Convection Heat Transfer Between Horizontal Circular Cylinders
,”
Int. J. Heat Mass Transfer
0017-9310,
19
, pp.
1127
1134
.
12.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
, 2004,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw-Hill
,
New York
.
13.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
, 1978, “
An Experimental Study of Natural Convection Heat Transfer in Concentric and Eccentric Horizontal Cylindrical Annuli
,”
ASME J. Heat Transfer
0022-1481,
100
, pp.
635
640
.
14.
Prusa
,
J.
, and
Yao
,
L. S.
, 1983, “
Natural Convection Heat Transfer between Eccentric Horizontal Cylinders
,”
ASME J. Heat Transfer
0022-1481,
105
, pp.
108
116
.
15.
Chao
,
C. H.
,
Chang
,
K. S.
, and
Park
,
K. H.
, 1982, “
Numerical Simulation Natural Convection in Concentric and Eccentric Horizontal Cylindrical Annuli
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
624
630
.
16.
Sparrow
,
E. M.
,
Stryker
,
P. C.
, and
Ansari
,
M. A.
, 1984, “
Natural Convection in Enclosures With Off-Center Innerbody
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
49
56
.
17.
Guj
,
G.
, and
Stella
,
F.
, 1995, “
“Natural Convection in Horizontal Eccentric Annuli: Numerical Study
,”
Numer. Heat Transfer, Part A
1040-7782,
27
(
1
), pp.
89
105
.
18.
Dyko
,
M. P.
, and
Vafai
,
K.
, 2001, “
Three-Dimensional Natural Convective States in a Narrow-Gap Horizontal Annulus
,”
J. Fluid Mech.
0022-1120,
445
, pp.
1
36
.
19.
Dyko
,
M. P.
,
Vafai
,
K.
, and
Mojtab
,
A. K.
, 1999, “
Numerical and Experimental Investigation of Stability of Natural Convective Flows Within a Horizontal Annulus
,”
J. Fluid Mech.
0022-1120,
381
, pp.
27
61
.
20.
Dyko
,
M. P.
, and
Vafai
,
K.
, 2002, “
On the Presence of Odd Transverse Convection Rolls in Narrow-Gap Horizontal Annuli
,”
Phys. Fluids
1070-6631,
14
, pp.
1291
1294
.
21.
Iyer
,
S. V.
, and
Vafai
,
K.
, 1999, “
Passive Heat Transfer Augmentation in a Cylindrical Annulus Utilizing Multiple Perturbations on the Inner and Outer Cylinders
,”
Numer. Heat Transf.
,
35
, pp.
567
586
. 1040-7782
22.
Padilla
,
E. L. M.
, and
Silveira-Neto
,
A.
, 2008, “
Large-Eddy Simulation of Transition to Turbulence in Natural Convection in a Horizontal Annular Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3656
3668
.
23.
Tsui
,
Y. T.
, and
Tremblay
,
B.
, 1984, “
On Transient Natural Convection Heat Transfer in the Annulus Between Concentric Horizontal Cylinders With Isothermal Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
103
111
.
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
12
.
You do not currently have access to this content.