Abstract

Considering the importance of mass transfer in a magnetohydrodynamic (MHD) convective flow, a numerical solution is obtained for a steady three-dimensional MHD convective mass transfer flow in an incompressible fluid due to a rotating disk with thermal diffusion. The governing partial differential equations of the MHD convective mass transfer flow are reduced to nonlinear ordinary differential equations by introducing suitable similarity transformations. The nonlinear similarity equations are then solved numerically by Nachtsheim–Swigert iteration technique. The results of the numerical solution are then presented graphically in the form of velocity, temperature, and concentration profiles. The corresponding skin-friction coefficients, the Nusselt number, and the Sherwood number are also calculated and displayed in tables showing the effects of various parameters on them. A good comparison between the present numerical predictions and the previously published data (Sparrow, and Gregg, 1959, “Heat Transfer From a Rotating Disk to Fluids of Any Prandtl Number,” ASME J. Heat Transfer, 8, pp. 249–251; Benton, 1966, “On the Flow Due to a Rotating Disc,” J. Fluid Mech., 24, pp. 781–800) has been achieved.

References

1.
Herrero
,
J.
,
Humphrey
,
J. A. C.
, and
Giralt
,
F.
, 1994, “
Comparative Analysis of Coupled Flow and Heat Transfer Between Co-Rotating Discs in Rotating and Fixed Cylindrical Enclosures
,”
HTD (Am. Soc. Mech. Eng.)
0272-5673,
30
, pp.
111
121
.
2.
Sparrow
,
E. M.
, and
Gregg
,
J. L.
, 1959, “
Heat Transfer From a Rotating Disk to Fluids of Any Prandtl Number
,”
ASME J. Heat Transfer
0022-1481,
8
, pp.
249
251
.
3.
von Kàrmàn
,
T.
, 1921, “
Ueber laminare und turbulente reibung
,”
Z. Angew. Math. Mech.
0044-2267,
1
, pp.
233
255
.
4.
Cochran
,
W. G.
, 1934, “
The Flow Due to a Rotating Disc
,”
Proc. Cambridge Philos. Soc.
0068-6735,
30
, pp.
365
375
.
5.
Benton
,
E. R.
, 1966, “
On the Flow Due to a Rotating Disc
,”
J. Fluid Mech.
0022-1120,
24
, pp.
781
800
.
6.
Wagner
,
C.
, 1948, “
Heat Transfer From a Rotating Disk to Ambient Air
,”
J. Appl. Phys.
0021-8979,
19
, pp.
837
839
.
7.
Kuiken
,
H. K.
, 1971, “
The Effect of Normal Blowing on the Flow Near a Rotating Disk of Infinite Extent
,”
J. Fluid Mech.
0022-1120,
47
, pp.
789
798
.
8.
El-Mistikawy
,
T. M. A.
, and
Attia
,
H. A.
, 1990, “
The Rotating Disk Flow in the Presence of Strong Magnetic Field
,”
Proceedings of the Third International Congress of Fluid Mechanics
, Vol.
3
, Cairo, Egypt, Jan. 2–4, pp.
1211
1222
.
9.
El-Mistikawy
,
T. M. A.
,
Attia
,
H. A.
, and
Megahed
,
A. A.
, 1991, “
The Rotating Disk Flow in the Presence of Weak Magnetic Field
,”
Proceedings of the Fourth Conference on Theoretical and Applied Mechanics
, Cairo, Egypt, Nov. 5–7, pp.
69
82
.
10.
Hassan
,
A. L. A.
, and
Attia
,
H. A.
, 1997, “
Flow Due to a Rotating Disk With Hall Effect
,”
Phys. Lett. A
0375-9601,
228
, pp.
246
290
.
11.
Attia
,
H. A.
, 1998, “
Unsteady MHD Flow Near a Rotating Porous Disk With Uniform Suction or Injection
,”
Fluid Dyn. Res.
0169-5983,
23
, pp.
283
290
.
12.
Kelson
,
N.
, and
Desseaux
,
A.
, 2000, “
Notes on Porous Rotating Disk Flow
,”
ANZIAM J.
1445-8735,
42
, pp.
C837
C855
.
13.
Yasuyuki
,
M.
,
Noriyuki
,
F.
, and
Masaya
,
K.
, 2002, “
A Characteristic of the Flow Field on a Heated Rotating Disk
,”
Third International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering
, EPFL, Lausanne, Switzerland, Sept. 9–11, pp.
1
4
.
14.
Maleque
,
Kh. A.
, and
Sattar
,
M. A.
, 2003, “
Transient Convective Flow Due to a Rotating Disc With Magnetic Field and Heat Absorption Effects
,”
Journal of Energy, Heat and Mass Transfer
,
25
, pp.
279
291
.
15.
Maleque
,
Kh. A.
, and
Sattar
,
M. A.
, 2005, “
The Effects of Variable Properties and Hall Current on Steady MHD Compressible Laminar Convective Fluid Flow Due to a Porous Rotating Disc
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4963
4972
.
16.
Maleque
,
Kh. A.
, and
Sattar
,
M. A.
, 2005, “
The Effects of Variable Properties on Steady Laminar Convective Flow Due to a Porous Rotating Disc
,”
ASME J. Heat Transfer
0022-1481,
127
(
12
), pp.
1406
1409
.
17.
Eckert
,
E. R. G.
, and
Drake
,
R. M.
, 1972,
Analysis of Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
18.
Jha
,
B. K.
, and
Singh
,
A. K.
, 1990, “
Soret Effects Free Convection and Mass Transfer Flow Over an Infinite Vertical Moving Plate
,”
Astrophys. Space Sci.
0004-640X,
173
, pp.
251
255
.
19.
Kafoussias
,
N. G.
, 1992, “
MHD Thermal-Diffusion Effects on Free-Convection and Mass Transfer Flow Over an Infinite Vertical Moving Plate
,”
Astrophys. Space Sci.
0004-640X,
192
, pp.
11
19
.
20.
Alam
,
M. M.
, and
Sattar
,
M. A.
, 1998, “
Unsteady MHD Free Convection and Mass Transfer in a Rotating System With Thermal Diffusion
,”
J. Energy Heat Mass Transf.
,
20
, pp.
77
87
. 0970-9991
21.
Sattar
,
M. A.
, and
Alam
,
M. M.
, 2001, “
Analytical Solution of the Free Convection and Mass Transfer Flow With Thermal Diffusion
,”
Dhaka Univ. J. Sci.
1022-2502,
49
(
1
), pp.
95
104
.
22.
Maleque
,
Kh. A.
, and
Sattar
,
M. A.
, 2002, “
Similarity Solution of MHD Free-Convective and Mass Transfer Flow Over a Vertical Porous Plate With Thermal Diffusion Effects
,”
The Aiub Journal of Science and Engineering (AJSE)
,
1
(
1
), pp.
44
55
.
23.
Nachtsheim
,
P. R.
, and
Swigert
,
P.
, 1965, “
Satisfaction of Asymptotic Boundary Conditions in Numerical Solution of System of Nonlinear of Boundary Layer Type
,”
NASA
Technical Report No. NASA-TN-D-3004.
You do not currently have access to this content.