Copper nanoparticles with an average size of 10 nm are prepared by the sputtering method and are characterized using different techniques, viz., X-ray diffraction spectrum, atomic force microscopy, and transmission electron microscopy. The pool boiling heat transfer characteristics of 0.25%, 0.5%, and 1.0% by weight concentrations of copper nanoparticles dispersed in distilled water and in distilled water with 9.0wt% of sodium dodecyl sulfate (SDS) are studied. Also the data for the boiling of pure distilled water and water with SDS are acquired. The above data are obtained using commercial seamless stainless steel tube heater with an outer diameter of 9.0 mm and an average surface roughness of 1.09μm. The experimental results concluded that (i) critical heat flux (CHF) obtained in water with surfactant nanofluids gives nearly one-third of the CHF obtained by copper-water nanofluids, (ii) pool boiling heat transfer coefficient decreases with the increase in the concentration of nanoparticles in water base fluids, and (iii) heat transfer coefficient increases with the addition of 9.0% surfactant in water. Further addition of nanoparticles in this mixture reduces the heat transfer coefficient. (iv) CHF increases nearly 50% with an increase in concentration of nanoparticles in the water as base fluid and nearly 60% in the water with surfactant as base fluid.

1.
Lee
,
S.
,
Choi
,
U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nano Particles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
2.
Choi
,
S.
, 1998, “
Nano Fluid Technology: Current Status and Future Research
,”
The Second Korean-American Scientists and Engineers Association Research Trend Study
, Vienna.
3.
Eastman
,
J. A.
,
Choi
,
U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nano Fluids Containing Copper Nano Particles
,”
Appl. Phys. Lett.
0003-6951,
78
(
6
), pp.
718
720
.
4.
Xuan
,
Y.
, and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement of Nano Fluids
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
58
64
.
5.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
6.
Vassallo
,
P.
,
Kumar
,
R.
, and
D’Amico
,
S.
, 2004, “
Pool Boiling Heat Transfer Experiments in Silica-Water Nano Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
407
411
.
7.
Bang
,
I. C.
, and
Chang
,
S. H.
, 2005, “
Boiling Heat Transfer Performance and Phenomena of Al2O3–Water Nanofluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2407
2419
.
8.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M.
, 2006, “
Experimental Study on CHF Characteristics of Water-TiO2 Nano Fluids
,”
Nuclear Engineering and Technology: An International Journal of the Korean Nuclear Society
,
38
(
1
), pp.
61
68
.
9.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2007, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4105
4116
.
10.
Cullity
,
B. D.
, and
Stock
,
S. R.
, 2001,
Elements of X-Ray Diffraction
,
3rd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Chap. 5, p.
170
.
11.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
I & EC Fundamentals
, Vol.
1
,
ACS Publications
, pp.
187
191
.
12.
Brinkman
,
H. C.
, 1952, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
0021-9606,
20
, pp.
571
581
.
13.
Kline
,
S. J.
, and
Mc. Clintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
. 0025-6501
14.
Cornwell
,
K.
, and
Houston
,
S. D.
, 1994, “
Nucleate Pool Boiling on Horizontal Tubes: A Convection-Based Correlation
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
303
309
.
15.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, 2003, “
Pool Boiling Characteristics of Nano Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
851
862
.
16.
Liu
,
Z. H.
,
Xiong
,
J. G.
, and
Bao
,
R.
, 2007, “
Boiling Heat Transfer Characteristics of Nanofluids in a Flat Heat Pipe Evaporator With Micro-Grooved Heating Surface
,”
Int. J. Multiphase Flow
0301-9322,
33
, pp.
1284
1295
.
17.
Liu
,
Z. H.
, and
Qiu
,
Y. H.
, 2007, “
Boiling Heat Transfer Characteristics of Nano Fluids Jet Impingement on a Plate Surface
,”
Heat Mass Transfer
0947-7411,
43
, pp.
699
706
.
18.
Wasekar
,
V. M.
, and
Manglik
,
R. M.
, 2000, “
Pool Boiling Heat Transfer in Aqueous Solutions of an Anionic Surfactant
,”
ASME J. Heat Transfer
0022-1481,
122
(
4
), pp.
708
715
.
19.
Hetsroni
,
G.
,
Gurevich
,
M.
,
Mosyak
,
A.
,
Rozenblit
,
R.
, and
Segal
,
Z.
, 2004, “
Boiling Enhancement With Environmentally Acceptable Surfactants
,”
Int. J. Heat Fluid Flow
,
25
, pp.
841
848
. 0142-727X
20.
Wen
,
D. S.
,
Ding
,
Y. L.
, and
Williams
,
R.
, 2006, “
Pool-Boiling Heat Transfer of Aqueous Based TiO2 Nanofluids
,”
J. Enhanced Heat Transfer
1065-5131,
13
, pp.
231
244
.
21.
Wang
,
C. H.
, and
Dhir
,
V. K.
, 1993, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
659
669
.
22.
Liu
,
Z. H.
, and
Liao
,
L.
, 2008, “
Sorption and Agglutination Phenomenon of Nanofluids on a Plain Heating Surface During Pool Boiling
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2593
2602
. 0017-9310
23.
Kang
,
M. G.
, 2000, “
Effect of Surface Roughness on Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
43
, pp.
4073
4085
. 0017-9310
24.
Liu
,
Z. H.
, and
Qiu
,
Y. H.
, 2002, “
Enhanced Boiling Heat Transfer in Restricted Spaces of a Compact Tube Bundle With Enhanced Tubes
,”
Appl. Therm. Eng.
,
22
, pp.
1931
1941
. 1359-4311
25.
Webb
,
R. L.
, and
Pais
,
C.
, 1992, “
Nucleate Pool Boiling Data for Five Refrigerants on Plain, Integral-Fin and Enhanced Tube Geometries
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
1893
1904
.
You do not currently have access to this content.