The secondary flow has been used frequently to enhance the convective heat transfer, and at the same flow condition, the intensity of convective heat transfer closely depends on the thermal boundary conditions. Thus far, there is less reported information about the sensitivity of heat transfer enhancement to thermal boundary conditions by using secondary flow. To account for this sensitivity, the laminar convective heat transfer in a circular tube fitted with twisted tape was investigated numerically. The effects of conduction in the tape on the Nusselt number, the relationship between the absolute vorticity flux and the Nusselt number, the sensitivity of heat transfer enhancement to the thermal boundary conditions by using secondary flow, and the effects of secondary flow on the flow boundary layer were discussed. The results reveal that (1) for fully developed laminar heat convective transfer, different tube wall thermal boundaries lead to different effects of conduction in the tape on heat transfer characteristics; (2) the Nusselt number is closely dependent on the absolute vorticity flux; (3) the efficiency of heat transfer enhancement is dependent on both the tube wall thermal boundaries and the intensity of secondary flow, and the ratio of Nusselt number with twisted tape to its counterpart with straight tape decreases with increasing twist ratio while it increases with increasing Reynolds number for both uniform wall temperature (UWT) and uniform heat flux (UHF) conditions; (4) the difference in the ratio between UWT and UHF conditions is also strongly dependent on the conduction in the tape and the intensity of the secondary flow; and (5) the twist ratio ranging from 4.0 to 6.0 does not necessarily change the main flow velocity boundary layer near tube wall, while Reynolds number has effects on the shape of the main flow velocity boundary layer near tube wall only in small regions.

1.
Oosthuizen
,
P. H.
, and
Naylor
,
D.
, 1999,
An Introduction to Convective Heat Transfer Analysis
,
McGraw-Hill
,
New York
.
2.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
, 2005,
Convection Heat and Mass Transfer
, 4th ed.,
McGraw-Hill
,
New York
.
3.
Sleicher
,
C. A.
, and
Tribus
,
M.
, 1956,
Proceedings of Heat Transfer and Fluid Mechanics Institute
,
Stanford University
,
Stanford
, p.
59
.
4.
Fiebig
,
M.
, 1995, “
Vortex Generators for Compact Heat Exchangers
,”
J. Enhanced Heat Transfer
1065-5131,
2
(
1–2
), pp.
43
61
.
5.
Joardar
,
A.
, and
Jacobi
,
A. M.
, 2005, “
Impact of Leading Edge Delta-Wing Vortex Generators on the Thermal Performance of a Flat Tube, Louvered-Fin Compact Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
8
), pp.
1480
1493
.
6.
Wang
,
L. B.
,
Ke
,
F.
,
Gao
,
S. D.
, and
Mei
,
Y. G.
, 2002, “
Local and Average Characteristics of Heat /Mass Transfer Over Flat Tube Bank Fin With Four Vortex Generators Per Tube
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
546
552
.
7.
Biswas
,
G.
,
Fujii
,
T. D.
, and
Nishino
,
K.
, 1996, “
Numerical and Experimental Determination of Flow Structure and Heat Transfer Effects of Longitudinal Vortices in a Channel Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
3441
3451
.
8.
Wang
,
Q. W.
,
Chen
,
Q. Y.
,
Wang
,
L.
,
Zeng
,
M.
,
Huang
,
Y. P.
, and
Xiao
,
Z. J.
, 2007, “
Experimental Study of Heat Transfer Enhancement in Rectangular Narrow Channel With Longitudinal Vortex Generators
,”
Nucl. Eng. Des.
0029-5493,
237
, pp.
686
693
.
9.
Webb
,
R. L.
, 2000, “
Heat Transfer and Friction Characteristics of Internal Helical-Rib Roughness
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
134
142
.
10.
Li
,
L. J.
,
Cui
,
W. Z.
,
Liao
,
Q.
,
Xin
,
M. D.
,
Jen
,
T. C.
, and
Chen
,
Q. H.
, 2005, “
Heat Transfer Augmentation in 3D Internally Finned and Microfinned Helical Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
10
), pp.
1916
1925
.
11.
Naphon
,
P.
,
Nuchjapo
,
M.
, and
Kurujareon
,
J.
, 2006, “
Tube Side Heat Transfer Coefficient and Friction Factor Characteristics of Horizontal Tubes With Helical Rib
,”
Energy Convers. Manage.
0196-8904,
47
, pp.
3031
3044
.
12.
Liao
,
Q.
,
Jen
,
T. C.
,
Chen
,
Q. H.
,
Li
,
L. J.
, and
Cui
,
W. Z.
, 2007, “
Heat Transfer Performance in 3D Internally Finned Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
7–8
), pp.
1231
1237
.
13.
Hong
,
S. W.
, and
Bergles
,
A. E.
, 1976, “
Augmentation of Laminar Heat Transfer in Tubes by Means of Twisted Tape Inserts
,”
ASME J. Heat Transfer
0022-1481,
98
, pp.
251
256
.
14.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 1993, “
Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part I—Laminar Flows
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
881
889
.
15.
Agarwal
,
S. K.
, and
Rajarao
,
M.
, 1996, “
Heat Transfer Augmentation for the Flow of Viscous Liquid in Circular Tubes Using Twisted Tape Inserts
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
3547
3557
.
16.
Patil
,
A. G.
, 2000, “
Laminar Flow Heat Transfer and Pressure Drop Characteristics of Power-Law Fluids Inside Tubes With Varying Width Twisted Tape Inserts
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
143
149
.
17.
Date
,
A. W.
, 2000, “
Numerical Prediction of Laminar Flow and Heat Transfer in a Tube With Twisted-Tape Insert: Effects of Property Variations and Buoyancy
,”
J. Enhanced Heat Transfer
1065-5131,
7
, pp.
217
229
.
18.
Al-Fahed
,
S.
,
Chamra
,
L. M.
, and
Chakroun
,
W.
, 1998, “
Pressure Drop and Heat Transfer Comparison for Both Microfin Tube and Twisted-Tape Inserts in Laminar Flow
,”
Exp. Therm. Fluid Sci.
0894-1777,
18
(
4
), pp.
323
333
.
19.
Saha
,
S. K.
,
Dutta
,
A.
, and
Dhal
,
S. K.
, 2001, “
Friction and Heat Transfer Characteristics of Laminar Swirl Flow Through a Circular Tube Fitted With Regularly Spaced Twisted-Tape Elements
,”
Int. J. Heat Mass Transfer
0017-9310,
44
(
22
), pp.
4211
4223
.
20.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 2003, “
Swirl Flow Heat Transfer and Pressure Drop With Twisted-Tape Inserts
,”
Adv. Heat Transfer
0065-2717,
36
, pp.
183
266
.
21.
Eriksson
,
L. E.
, 1985, “
Practical Three-Dimension Mesh Generation Using Transfinite Interpolation
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
6
(
3
), pp.
712
741
.
22.
Thompson
,
J. F.
,
Warsi
,
Z. U. A.
, and
Mastin
,
C. W.
, 1985,
Numerical Grid Generation, Foundation and Application
,
North-Holland
,
New York
, pp.
95
140
.
23.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid flow
,
Hemisphere
,
New York
, pp.
330
351
.
24.
Tao
,
W. Q.
, 2001,
Numerical Heat Transfer
, 2nd ed.,
Xi’an Jiaotong University Press
,
Xi’an, China
, pp.
485
488
.
25.
Lin
,
Z. M.
,
Teng
,
S.
, and
Wang
,
L. B.
, 2008, “
Numerical Study of Conjugate Heat Transfer in a Tube With Twisted Tape Insert
,”
JP Journal of Heat and Mass Transfer
,
2
(
3
), pp.
279
302
.
26.
Chang
,
L. M.
,
Wang
,
L. B.
,
Song
,
K. W.
,
Sun
,
D. L.
, and
Fan
,
J. F.
, 2009, “
Numerical Study of the Relationship Between Heat Transfer Enhancement and Absolute Vorticity Flux Along Main Flow Direction in Channel Formed by Flat Tube Bank Fin With Vortex Generators
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
7–8
), pp.
1794
1801
.
27.
Song
,
K. W.
,
Wang
,
L. B.
, and
Sun
,
D. L.
, 2009, “
Convective Heat Transfer and Absolute Vorticity Flux Along Main Flow in a Channel Formed by Flat Tube Bank Fins With Vortex Generators Mounted on Both Fin Surfaces
,”
J. Enhanced Heat Transfer
1065-5131,
16
(
2
), pp.
123
139
.
28.
Lin
,
Z. M.
,
Sun
,
D. L.
, and
Wang
,
L. B.
, “
The Relationship Between Absolute Vorticity Flux Along Main Flow and Convection Heat Transfer in a Tube Inserting a Twisted Tape
,”
Heat Mass Transfer
0947-7411, submitted.
You do not currently have access to this content.