This paper discusses the experimental investigation of vortex tube performance as it relates to cold mass fraction, inlet pressure, and nozzle number. The orifices have been made of the polyamide plastic material. Five different orifices, each with two, three, four, five and six nozzles, respectively, were manufactured and used during the test. The experiments have been conducted with each one of those orifices shown above, and the performance of the vortex tube has been tested with air inlet pressures varying from 150 kPa to 700 kPa with 50 kPa increments and the cold mass fractions of 0.5–0.7 with 0.02 increments. The energy separation has been investigated by use of the experimentally obtained data. The results of the experimental study have shown that the inlet pressure was the most effective parameter on heating and the cooling performance of the vortex tube. This occurs due to the higher angular velocities and angular momentum conservation inside the vortex tube. The higher the inlet pressure produces, the higher the angular velocity difference between the center flow and the peripheral flow in the tube. Furthermore, the higher velocity also means a higher frictional heat formation between the wall and the flow at the wall surface of the tube. This results in lower cold outlet temperatures and higher hot outlet temperatures.

1.
Khodorkov
,
L.
,
Poshernev
,
N. V.
, and
Zhidkov
,
M. A.
, 2003, “
The Vortex Tube-A Universal Device for Heating, Cooling, Cleaning, and Drying Gases and Separating Gas Mixtures
,”
Chem. Petrol. Eng.
,
39
, pp.
409
415
. 0009-2355
2.
Wu
,
Y. T.
,
Ding
,
Y.
,
Ji
,
Y. B.
,
Ma
,
C. F.
, and
Ge
,
M. C.
, 2007, “
Modification and Experimental Research on Vortex Tube
,”
Int. J. Refrig.
0140-7007,
30
, pp.
1042
1049
.
3.
Lewins
,
J.
, and
Bejan
,
A.
, 1999, “
Vortex Tube Optimization Theory
,”
Energy
0360-5442,
24
, pp.
931
943
.
4.
Eiamsa-ard
,
S.
, and
Promvonge
,
P.
, 2008, “
Review of Ranque-Hilsch Effects in Vortex Tubes
,”
Renewable Sustainable Energy Rev.
1364-0321,
12
, pp.
1822
1842
.
5.
Aljuwayhel
,
N. F.
,
Nellis
,
G. F.
, and
Klein
,
S. A.
, 2005, “
Parametric and Internal Study of the Vortex Tube Using a CFD Model
,”
Int. J. Refrig.
0140-7007,
28
, pp.
442
450
.
6.
Ranque
,
M. G.
, 1933, “
Experiences sur la detente avec production simultanees d'un echappement d'air chaud et d'un echappement d'air froid
,”
J. Phys. Radium
0368-3842,
4
, pp.
112
115
.
7.
Chengming
,
G.
, 2005, Technische Universiteit Eindhoven, p.
151
.
8.
Hilsch
,
R.
, 1947, “
The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process
,”
Rev. Sci. Instrum.
0034-6748,
18
, pp.
108
1113
.
9.
Gao
,
C. M.
,
Bosschaart
,
K. J.
,
Zeegers
,
J. C. H.
, and
de Waele
,
A. T. A. M.
, 2005, “
Experimental Study on a Simple Ranque-Hilsch Vortex Tube
,”
Cryogenics
0011-2275,
45
, pp.
173
183
.
10.
Kirmaci
,
V.
, and
Uluer
,
O.
, 2008, “
The Effects of Orifice Nozzle Number on Heating and Cooling Performance of Vortex Tubes: An Experimental Study
,”
Instrum. Sci. Technol.
1073-9149,
36
, pp.
493
502
.
11.
Cockerill
,
T.
, 1995, “
Thermodynamic and Fluid Mechanics of Ranque-Hilsch Vortex Tube
,” MS thesis, University of Cambridge, Cambridge, England.
12.
Dincer
,
K.
,
Baskaya
,
S.
,
Uysal
,
B. Z.
, and
Ucgul
,
I.
, 2009, “
Experimental Investigation of the Performance of a Ranque-Hilsch Vortex Tube With Regard to a Plug Located at the Hot Outlet
,”
Int. J. Refrig.
0140-7007,
32
, pp.
87
94
.
13.
Ahlborn
,
B.
,
Keller
,
J. U.
,
Staudt
,
R.
,
Treitz
,
G.
, and
Rebhan
,
E.
, 1994, “
Limits of Temperature Separation in a Vortex Tube
,”
J. Phys. D: Appl. Phys.
0022-3727,
27
, pp.
480
488
.
14.
Ahlborn
,
B.
,
Keller
,
J. U.
, and
Rebhan
,
E.
, 1998, “
The Heat Pump in a Vortex Tube
,”
J. Non-Equilib. Thermodyn.
0340-0204,
23
, pp.
159
165
.
15.
Lewins
,
J.
, and
Bejan
,
A.
, 1999, “
Vortex Tube Optimization Theory
,”
Energy
0360-5442,
24
, pp.
931
943
.
16.
Trofimov
,
V. M.
, 2000, “
Physical Effect in Ranque Vortex Tubes
,”
JETP Lett.
,
72
, pp.
249
252
.
17.
Saidi
,
M. H.
, and
Valipour
,
M. S.
, 2003, “
Experimental Modeling of Vortex Tube Refrigerator
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
1971
1980
.
18.
Singh
,
P. K.
,
Tathgir
,
R. G.
,
Gangacharyulu
,
D.
, and
Grewal
,
G. S.
, 2004, “
An Experimental Performance Evaluation of Vortex Tube
,”
J. Inst. Eng. (India), Part MC
,
84
, pp.
149
153
.
19.
Promvonge
,
P.
, and
Eiamsa-ard
,
S.
, 2004, “
Experimental Investigation of Temperature Separation in a Vortex Tube Refrigerator With Snail Entrance
,”
ASEAN J. Science & Technol Development
,
21
, pp.
297
308
.
20.
Chengming
,
G.
, 2005, “
Experimental Study on the Ranque-Hilsch Vortex Tube
,” Technische Universiteit Eindhoven, Proefschrift.
21.
Aydın
,
O.
, and
Baki
,
M.
, 2006, “
An Experimental Study on the Design Parameters of a Counter Flow Vortex Tube
,”
Energy
0360-5442,
31
, pp.
2763
2772
.
22.
Dincer
,
K.
,
Baskaya
,
S.
, and
Uysal
,
B. Z.
, 2008, “
Experimental Investigation of the Effects of Length to Diameter Ratio and Nozzle Number on the Performance of Counter Flow Ranque-Hilsch Vortex Tubes
,”
Heat Mass Transfer
0947-7411,
44
, pp.
367
373
.
You do not currently have access to this content.