The Chebyshev collocation spectral method for coupled radiative and conductive heat transfer in concentric spherical participating medium is introduced and formulated. The angular dependence of the problem is discretized by conventional discrete ordinates method, and the space dependence is expressed by Chebyshev polynomial and discretized by collocation spectral method. Due to the exponential convergence of the spectral methods, very high accuracy can be obtained even using a small resolution (i.e., number of collocation points) for present problems. Comparisons between the solutions from Chebyshev collocation spectral–discrete ordinates method (SP-DOM) with available numerical or exact solutions in references indicate that the SP-DOM for the combination of radiation and conduction in concentric spherical participating medium is accurate and efficient.

1.
Siegel
,
R.
, and
Howell
,
J. R.
, 2002,
Thermal Radiation Heat Transfer
,
4th ed.
,
Taylor & Francis
,
Washington, DC
.
2.
Liu
,
L. H.
, and
Tan
,
J. Y.
, 2007, “
Meshless Local Petrov–Galerkin Approach for Coupled Radiative and Conductive Heat Transfer
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
672
681
.
3.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
,
2nd ed.
,
Academic
,
San Diego, CA
.
4.
Viskanta
,
R.
, and
Crosbie
,
A. L.
, 1967, “
Radiative Transfer Through a Spherical Shell of an Absorbing-Emitting Gray Medium
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
7
, pp.
871
889
.
5.
Viskanta
,
R.
, and
Merriam
,
R. L.
, 1968, “
Heat Transfer by Combined Conduction and Radiation Between Concentric Spheres Separated by Radiating Medium
,”
ASME J. Heat Transfer
,
90
, pp.
248
255
. 0022-1481
6.
Siewert
,
C. E.
, and
Thomas
,
J. R.
, Jr.
, 1991, “
On Coupled Conductive-Radiative Heat-Transfer Problems in a Sphere
,”
J. Quant. Spectrosc. Radiat. Transf.
,
46
, pp.
63
72
. 0022-4073
7.
Jia
,
G.
,
Yener
,
Y.
, and
Cipolla
,
J. W.
, 1991, “
Radiation Between Two Concentric Spheres Separated by a Participating Medium
,”
J. Quant. Spectrosc. Radiat. Transf.
,
46
, pp.
11
19
. 0022-4073
8.
Sghaier
,
T.
,
Sifaoui
,
M. S.
, and
Soufiani
,
A.
, 2000, “
Study of Radiation in Spherical Media Using Discrete Ordinates Method Associated With the Finite Legendre Transform
,”
J. Quant. Spectrosc. Radiat. Transf.
,
64
, pp.
339
351
. 0022-4073
9.
Trabelsi
,
H.
,
Sghaier
,
T.
, and
Sifaoui
,
M. S.
, 2005, “
A Theoretical Study of Radiation Between Two Concentric Spheres Using a Modified Discrete Ordinates Method Associated With Legendre Transform
,”
J. Quant. Spectrosc. Radiat. Transf.
,
93
, pp.
415
428
. 0022-4073
10.
Aouled-Dlala
,
N.
,
Sghaier
,
T.
, and
Seddiki
,
E.
, 2007, “
Numerical Solution of Radiative and Conductive Heat Transfer in Concentric Spherical and Cylindrical Media
,”
J. Quant. Spectrosc. Radiat. Transf.
,
107
, pp.
443
457
. 0022-4073
11.
Kim
,
M. Y.
,
Cho
,
J. H.
, and
Baek
,
S. W.
, 2008, “
Radiative Heat Transfer Between Two Concentric Spheres Separated by a Two-Phase Mixture of Non-Gray and Particles Using the Modified Discrete-Ordinates Method
,”
J. Quant. Spectrosc. Radiat. Transf.
,
109
, pp.
1607
1621
. 0022-4073
12.
Gottlieb
,
D.
, and
Orszag
,
S. A.
, 1977,
Numerical Analysis of Spectral Methods: Theory and Applications
(
Regional Conference Series in Applied Mathematics
Vol.
28
),
SIAM
,
Philadelphia, PA
.
13.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
, 1989,
Spectral Methods in Fluid Dynamics
,
Springer-Verlag
,
Berlin
.
14.
Peyret
,
R.
, 2002,
Spectral Methods for Incompressible Viscous Flow
,
Springer-Verlag
,
New York
.
15.
Ben Belgacem
,
F.
, and
Grundmann
,
M.
, 1998, “
Approximation of the Wave and Electromagnetic Diffusion Equations by Spectral Methods
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
20
, pp.
13
32
.
16.
Shan
,
X. W.
,
Montgomery
,
D.
, and
Chen
,
H. D.
, 1991, “
Nonlinear Magnetohydrodynamics by Galerkin-Method Computation
,”
Phys. Rev. A
1050-2947,
44
, pp.
6800
6818
.
17.
Shan
,
X. W.
, 1994, “
Magnetohydrodynamic Stabilization Through Rotation
,”
Phys. Rev. Lett.
0031-9007,
73
, pp.
1624
1627
.
18.
Zenouzi
,
M.
, and
Yener
,
Y.
, 1992, “
Simultaneous Radiation and Natural Convection in Vertical Slots
,” ASME
HTD-203
, pp.
179
186
.
19.
Zenouzi
,
M.
, and
Yener
,
Y.
, 1992, “
Thermal Stability of a Radiating Fluid in a Vertical Narrow Slot
,” ASME
HTD-219
, pp.
1
7
.
20.
Kuo
,
D. C.
, and
Morales
,
J. C.
, 1996, “
Combined Natural Convection and Volumetric Radiation in a Horizontal Annulus: Spectral and Finite Volume Predictions
,” ASME
HTD-324
, pp.
29
36
.
21.
Kuo
,
D. C.
, and
Morales
,
J. C.
, 1999, “
Combined Natural Convection and Volumetric Radiation in a Horizontal Annulus: Spectral and Finite Volume Predictions
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
610
615
.
22.
Ganz
,
B.
,
Schmittel
,
P.
,
Koch
,
R.
, and
Wittig
,
S.
, 1998, “
Validation of Numerical Methods at a Confined Turbulent Natural Gas Diffusion Flame Considering Detailed Radiative Transfer
,” ASME Paper No. GT 9.
23.
De Oliveira
,
J. V. P.
,
Cardona
,
A. V.
,
Vilhena
,
M. T.
, and
Barros
,
R. C.
, 2002, “
A Semi-Analytical Numerical Method for Time-Dependent Radiative Transfer Problems in Slab Geometry With Coherent Isotropic Scattering
,”
J. Quant. Spectrosc. Radiat. Transf.
,
73
, pp.
55
62
. 0022-4073
24.
Espinosa Lara
,
F.
, and
Rieutord
,
M.
, 2007, “
The Dynamics of a Fully Radiative Rapidly Rotating Star Enclosed Within a Spherical Box
,”
Astron. Astrophys.
,
470
, pp.
1013
1022
. 0004-6361
25.
Modest
,
M. F.
, and
Yang
,
J.
, 2008, “
Elliptic PDE Formulation and Boundary Conditions of the Spherical Harmonics Method of Arbitrary Order for General Three-Dimensional Geometries
,”
J. Quant. Spectrosc. Radiat. Transf.
,
109
, pp.
1641
1666
. 0022-4073
26.
Ritchie
,
B.
,
Dykema
,
P. G.
, and
Braddy
,
D.
, 1997, “
Use of Fast-Fourier-Transform Computational Methods in Radiation Transport
,”
Phys. Rev. E
1063-651X,
56
, pp.
2217
2227
.
27.
Kim
,
A. D.
, and
Ishimaru
,
A.
, 1999, “
A Chebyshev Spectral Method for Radiative Transfer Equations Applied to Electromagnetic Wave Propagation and Scattering in a Discrete Random Medium
,”
J. Comput. Phys.
0021-9991,
152
, pp.
264
280
.
28.
Kim
,
A. D.
, and
Moscoso
,
M.
, 2002, “
Chebyshev Spectral Methods for Radiative Transfer
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
23
, pp.
2075
2095
.
29.
Kim
,
A. D.
, and
Moscoso
,
M.
, 2003, “
Radiative Transfer Computations for Optical Beams
,”
J. Comput. Phys.
0021-9991,
185
, pp.
50
60
.
30.
Asadzadeh
,
M.
, and
Kadem
,
A.
, 2006, “
Chebyshev Spectral-SN Method for the Neutron Transport Equation
,”
Comput. Math. Appl.
,
52
, pp.
509
524
. 0898-1221
31.
Li
,
B. -W.
,
Sun
,
Y. -S.
, and
Yu
,
Y.
, 2008, “
Iterative and Direct Chebyshev Collocation Spectral Methods for One-Dimensional Radiative Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5887
5894
. 0017-9310
32.
Sun
,
Y. -S.
, and
Li
,
B. -W.
, 2009, “
Chebyshev Collocation Spectral Method for One-Dimensional Radiative Heat Transfer in Graded Index Medium
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
691
698
.
33.
Fiveland
,
W. A.
, 1984, “
Discrete-Ordinates Solutions of the Radiative Transport Equation for Rectangular Enclosures
,”
ASME J. Heat Transfer
,
106
, pp.
699
706
. 0022-1481
34.
Fiveland
,
W. A.
, 1987, “
Discrete Ordinates Methods for Radiative Heat Transfer in Isotropically and Anisotropically Scattering Media
,”
ASME J. Heat Transfer
,
109
, pp.
809
812
. 0022-1481
35.
Fiveland
,
W. A.
, 1988, “
Three-Dimensional Radiative Heat-Transfer Solutions by the Discrete-Ordinates Method
,”
J. Thermophys. Heat Transfer
0887-8722,
2
, pp.
309
316
.
36.
Pontaza
,
J. P.
, and
Reddy
,
J. N.
, 2005, “
Least-Squares Finite Element Formulations for One-Dimensional Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
95
, pp.
387
406
.
37.
Anderson
,
E.
,
Bai
,
Z.
,
Bischof
,
C.
,
Blackford
,
S.
,
Demmel
,
J.
,
Dongarra
,
J.
,
Du Croz
,
J.
,
Greenbaum
,
A.
,
Hammarling
,
S.
,
McKenney
,
A.
, and
Sorensen
,
D.
, 1999, LAPACK Users’ Guide,
3rd ed.
, http://www.netlib.org/lapack/lug/http://www.netlib.org/lapack/lug/.
You do not currently have access to this content.