Natural-convection boundary-layer flow of a non-Newtonian fluid along a heated semi-infinite vertical flat plate with uniform surface temperature has been investigated using a four-parameter modified power-law viscosity model. In this model, there are no physically unrealistic limits of zero or infinite viscosity that are encountered in the boundary-layer formulation for two-parameter Ostwald–de Waele power-law fluids. The leading-edge singularity is removed using a coordinate transformation. The boundary-layer equations are solved by an implicit finite-difference marching technique. Numerical results are presented for the case of a shear-thinning fluid. The results indicate that a similarity solution exists locally in a region near the leading edge of the plate, where the shear rate is not large enough to induce non-Newtonian effects; this similarity solution is identical to the similarity solution for a Newtonian fluid. The size of this region depends on the Prandtl number. Downstream of this region, the solution of the boundary-layer equations is nonsimilar. As the shear rate increases beyond a threshold value, the viscosity of the shear-thinning fluid is reduced. This leads to a decrease in the wall shear stress compared with that for a Newtonian fluid. The reduction in the viscosity accelerates the fluid in the region close to the wall, resulting in an increase in the local heat transfer rate compared with the case of a Newtonian fluid.

1.
Hinch
,
J.
, 2003, “
Non-Newtonian Geophysical Fluid Dynamics
,” 2003 Program in Geophysical Fluid Dynamics, Woods Hole Oceanographic Institution Woods Hole, MA.
2.
Acrivos
,
A.
, 1960, “
A Theoretical Analysis of Laminar Natural Convection Heat Transfer to Non-Newtonian Fluids
,”
AIChE J.
0001-1541,
6
, pp.
584
590
.
3.
Tien
,
C.
, 1967, “
Laminar Natural Convection Heat Transfer to Non-Newtonian Fluids
,”
Appl. Sci. Res.
,
17
, pp.
233
248
. 0003-6994
4.
Chen
,
T. V. W.
, and
Wollersheim
,
D. E.
, 1973, “
Free Convection at a Vertical Plate With Uniform Flux Conditions in Non-Newtonian Power-Law Fluids
,”
ASME J. Heat Transfer
,
95
, pp.
123
124
. 0022-1481
5.
Shulman
,
Z. P.
,
Baikov
,
V. I.
, and
Zaltsgendler
,
E. A.
, 1976, “
An Approach to Prediction of Free Convection in Non-Newtonian Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
19
, pp.
1003
1007
.
6.
Som
,
A.
, and
Chen
,
J. L. S.
, 1984, “
Free Convection of Non-Newtonian Fluids Over Non-Isothermal Two-Dimensional Bodies
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
791
794
.
7.
Haq
,
S.
,
Kleinstreuer
,
C.
, and
Mulligan
,
J. C.
, 1988, “
Transient Free Convection of a Non-Newtonian Fluid Along a Vertical Wall
,”
ASME J. Heat Transfer
,
110
, pp.
604
607
. 0022-1481
8.
Huang
,
M. J.
,
Chung
,
J. S.
,
Chou
,
Y. L.
, and
Cheng
,
C. K.
, 1989, “
Effects of Prandtl Number on Free Convection Heat Transfer From a Vertical Plate to a Non-Newtonian Fluid
,”
ASME J. Heat Transfer
,
111
, pp.
189
191
. 0022-1481
9.
Huang
,
M. J.
, and
Chen
,
C. K.
, 1990, “
Local Similarity Solutions of Free-Convective Heat Transfer From a Vertical Plate to Non-Newtonian Power-Law Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
119
125
.
10.
Kim
,
E.
, 1997, “
Natural Convection Along a Wavy Vertical Plate to Non-Newtonian Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
3069
3078
.
11.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2006, “
Fluid Flow and Heat Transfer in Power-Law Fluids Across Circular Cylinders: Analytical Study
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
870
878
.
12.
Denier
,
J. P.
, and
Hewitt
,
R. E.
, 2004, “
Asymptotic Matching Constraints for a Boundary-Layer Flow of a Power-Law Fluid
,”
J. Fluid Mech.
0022-1120,
518
, pp.
261
279
.
13.
Denier
,
J. P.
, and
Dabrowski
,
P. P.
, 2004, “
On the Boundary-Layer Equations for Power-Law Fluids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
460
, pp.
3143
3158
.
14.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Fluid Mechanics
(
Dynamics of Polymeric Liquids
Vol.
1
),
2nd ed.
,
Wiley
,
New York
.
15.
Yao
,
L. S.
, and
Molla
,
M. M.
, 2008, “
Non-Newtonian Fluid Flow on a Flat Plate Part 1: Boundary Layer
,”
J. Thermophys. Heat Transfer
0887-8722,
22
, pp.
758
761
.
16.
Yao
,
L. S.
, and
Molla
,
M. M.
, 2008, “
Forced Convection of Non-Newtonian Fluids on a Heated Flat Plate
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5154
5159
. 0017-9310
17.
Molla
,
M. M.
, and
Yao
,
L. S.
, 2008, “
Non-Newtonian Fluid Flow on a Flat Plate Part 2: Heat Transfer
,”
J. Thermophys. Heat Transfer
0887-8722,
22
, pp.
762
765
.
18.
Molla
,
M. M.
, and
Yao
,
L. S.
, 2009, “
The Flow of Non-Newtonian Fluids on a Flat Plate With a Uniform Heat Flux
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
011702
.
19.
Yao
,
L. S.
, 1987, “
Two-Dimensional Mixed Convection Along a Flat Plate
,”
ASME J. Heat Transfer
,
109
, pp.
440
445
. 0022-1481
20.
Molla
,
M. M.
, and
Yao
,
L. S.
, 2009, “
Non-Newtonian Natural Convection Along a Vertical Heated Wavy Surface Using a Modified Power-Law Viscosity Model
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
012501
.
21.
Molla
,
M. M.
, and
Yao
,
L. S.
, 2008, “
Non-Newtonian Mixed Convection Along a Vertical Flat Plate Heated With a Uniform Surface Temperature
,”
Int. J. Heat Mass Transfer
, (to be published). 0022-1481
22.
Ghosh Moulic
,
S.
, 1988, “
Mixed Convection Along a Wavy Surface
,” MS thesis, Arizona State University, Tempe, AZ.
23.
Ghosh Moulic
,
S.
, and
Yao
,
L. S.
, 1989, “
Mixed Convection Along a Wavy Surface
,”
ASME J. Heat Transfer
,
111
, pp.
974
979
. 0022-1481
You do not currently have access to this content.