The effect of film-hole geometry and angle on turbine blade leading edge film cooling has been experimentally studied using the pressure sensitive paint technique. The leading edge is modeled by a blunt body with a semicylinder and an after-body. Two film cooling designs are considered: a heavily film cooled leading edge featured with seven rows of film cooling holes and a moderately film cooled leading edge with three rows. For the seven-row design, the film holes are located at 0 deg (stagnation line), ±15 deg, ±30 deg, and ±45 deg on the model surface. For the three-row design, the film holes are located at 0 deg and ±30 deg. Four different film cooling hole configurations are applied to each design: radial angle cylindrical holes, compound angle cylindrical holes, radial angle shaped holes, and compound angle shaped holes. Testing was done in a low speed wind tunnel. The Reynolds number, based on mainstream velocity and diameter of the cylinder, is 100,900. The mainstream turbulence intensity is about 7% near of leading edge model and the turbulence integral length scale is about 1.5 cm. Five averaged blowing ratios are tested ranging from M=0.5 to M=2.0. The results show that the shaped holes provide higher film cooling effectiveness than the cylindrical holes, particularly at higher average blowing ratios. The radial angle holes give better effectiveness than the compound angle holes at M=1.02.0. The seven-row film cooling design results in much higher effectiveness on the leading edge region than the three-row design at the same average blowing ratio or same amount coolant flow.

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
2.
Luckey
,
D. W.
,
Winstanley
,
D. K.
,
Hames
,
G. J.
, and
L’Ecuyer
,
M. R.
, 1977, “
Stagnation Region Gas Film Cooling for Turbine Blade Leading Edge Applications
,” AIAA
J. Aircr.
0021-8669,
14
, pp.
494
501
.
3.
Karni
,
J.
, and
Goldstein
,
R. J.
, 1990, “
Surface Injection Effect on Mass Transfer From a Cylinder in Crossflow: A Simulation of Film Cooling in the Leading Edge Region of a Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
418
427
.
4.
Mick
,
W. J.
, and
Mayle
,
R. E.
, 1988, “
Stagnation Film Cooling and Heat Transfer Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
730
737
.
5.
Mehendale
,
A. B.
, and
Han
,
J. C.
, 1992, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
707
715
.
6.
Mehendale
,
A. B.
, and
Han
,
J. C.
, 1993, “
Reynolds Number Effect on Leading Edge Film Effectiveness and Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
3723
3730
.
7.
Ou
,
S.
,
Mehendale
,
A. B.
, and
Han
,
J. C.
, 1992, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer: Effect of Film Hole Row Location
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
716
723
.
8.
Ekkad
,
S. V.
,
Han
,
J. C.
, and
Du
,
H.
, 1998, “
Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
594
600
.
9.
Gao
,
Z.
,
Wright
,
L. M.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP and Transient IR Measurement Techniques for Leading Edge Film Cooling
,” ASME Paper No. IMECE2005-80146.
10.
Funazaki
,
K.
,
Yokota
,
M.
, and
Yamawaki
,
K.
, 1997, “
The Effect of Periodic Wake Passing on Film Effectiveness of Discrete Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
292
301
.
11.
Ou
,
S.
, and
Rivir
,
R. B.
, 2001, “
Leading Edge Film Cooling Heat Transfer With High Free Stream Turbulence Using a Transient Liquid Crystal Image Method
,”
Int. J. Heat Fluid Flow
,
22
, pp.
614
623
. 0142-727X
12.
Nirmalan
,
N. V.
, and
Hylton
,
L. D.
, 1990, “
An Experimental Study of Turbine Vane Heat Transfer With Leading Edge and Downstream Film Cooling
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
477
487
.
13.
Abuaf
,
N.
,
Bunker
,
R.
, and
Lee
,
C. P.
, 1997, “
Heat Transfer and Film Cooling Effectiveness in a Linear Airfoil Cascade
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
302
309
.
14.
Cruse
,
M. W.
,
Yuki
,
U. M.
, and
Bogard
,
D. G.
, 1997, “
Investigation of Various Parametric Influences on Leading Edge Film Cooling
,” ASME Paper No. 97-GT-296.
15.
Ekkad
,
S. V.
,
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Lee
,
C. P.
, 1997, “
Combined Effect of Grid Turbulence and Unsteady Wake on Film Effectiveness and Heat Transfer Coefficient of a Gas Turbine Blade With Air and CO2 Film Injection
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
594
600
.
16.
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
, 2003, “
Effects of Coolant Density Ratio on Film Cooling Performance on a Vane
,” ASME Paper No. 2003-GT-38582.
17.
Mhetras
,
S. P.
, and
Han
,
J. C.
, 2006, “
Effect of Unsteady Wake on Showerhead Film Cooling Protection for a Gas Turbine Blade
,”
International Heat Transfer Conference
, Sydney, Australia.
18.
Dring
,
R. P.
,
Blair
,
M. F.
, and
Hoslyn
,
H. D.
, 1980, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
81
87
.
19.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
, 1990, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
488
496
.
20.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1994, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
63
70
.
21.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H.
, 2006, “
Film Cooling Effectiveness on the Leading Edge Region of a Rotating Turbine Blade With Two Rows of Film Cooling Holes Using Pressure Sensitive Paint
,”
ASME J. Heat Transfer
0022-1481,
128
(
9
), pp.
879
888
.
22.
Ahn
,
J.
,
Schobeir
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2007, “
Effect of Rotation on Leading Edge Region Film Cooling of a Gas Turbine Blade With Three Rows of Film Cooling Holes
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
15
25
.
23.
Mouzon
,
B. D.
,
Terrell
,
E. J.
,
Ablert
,
J. E.
, and
Bogard
,
D. G.
, 2005, “
Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge
,” ASME Paper No. GT2005-69002.
24.
Falcoz
,
C.
,
Weigand
,
B.
, and
Ott
,
P.
, 2006, “
Experimental Investigation on Showerhead Cooling on a Blunt Body
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1287
1298
. 0017-9310
25.
Kim
,
Y. J.
, and
Kim
,
S. M.
, 2004, “
Influence of Shaped Injection Holes on Turbine Blade Leading Edge Film Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
245
256
.
26.
Reiss
,
H.
, and
Bölcs
,
A.
, 2000, “
Experimental Study of Showerhead Cooling on a Cylinder Comparing Several Configurations Using Cylindrical and Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
161
169
.
27.
Lu
,
Y.
,
Allison
,
D.
, and
Ekkad
,
S. V.
, 2006, “
Influence of Hole Angle and Shaping on Leading Edge Showerhead Film Cooling
,” ASME Paper No. GT2006-90370.
28.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
, Chaps. 3 and 4.
You do not currently have access to this content.