Characterization and regulation of isothermal surfaces are key issues in a number of thermal management devices. The surface temperature uniformity can be controlled utilizing a variable area channel heat exchanger filled with a porous medium. A comprehensive analytical investigation of forced convection through a generic variable area channel is carried out to design a compact heat exchanger in producing an isothermal surface subject to a constant heat flux, which may be required in the biological, electronics, optical, laser, manufacturing, and solidification applications. Exact solutions for the fluid and solid phases and the wall surface temperature distributions as well as the Nusselt number correlations are established while incorporating local thermal nonequilibrium and transverse conduction contributions. The channel temperature field is adjusted utilizing either an adiabatic or a constant temperature on the inclined surface. The effects of the pertinent physical parameters, such as channel inlet/outlet thickness, inclination angle, Biot number, ratio of fluid and matrix thermal conductivities, working fluid properties, and imposed heat flux, on the fluid and solid temperature fields and the isothermal surface are thoroughly investigated. The results indicate that utilizing proper pertinent parameters, an isothermal surface is achieved. The validity of the utilization of the local thermal equilibrium model is also investigated and error maps are presented.

1.
Zhu
,
N.
, and
Vafai
,
K.
, 1998, “
Analytical Modeling of the Startup Characteristics of Asymmetrical Flat-Plate and Disk-Shaped Heat Pipes
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
2619
2637
.
2.
Wang
,
Y.
, and
Vafai
,
K.
, 2000, “
An Experimental Investigation of the Thermal Performance of an Asymmetrical Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2657
2668
.
3.
Jiang
,
P. X.
,
Fan
,
M. H.
,
Si
,
G. S.
, and
Ren
,
Z. P.
, 2001, “
Thermal-Hydraulic Performance of Small Scale Micro-Channel and Porous-Media Heat-Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
44
(
5
), pp.
1039
1051
.
4.
Lee
,
D. Y.
, and
Vafai
,
K.
, 1999, “
Comparative Analysis of Jet Impingement and Microchannel Cooling for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
1555
1568
.
5.
Vafai
,
K.
, and
Zhu
,
L.
, 1999, “
Analysis of a Two Layered Microchannel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
2287
2297
.
6.
Khaled
,
A. R.
, and
Vafai
,
K.
, 2003, “
The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4989
5003
.
7.
Mahjoob
,
S.
,
Vafai
,
K.
, and
Beer
,
N. R.
, 2008, “
Rapid Microfluidic Thermal Cycler for Polymerase Chain Reaction Nucleic Acid Amplification
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
9-10
), pp.
2109
2122
.
8.
Khanafer
,
K.
, and
Vafai
,
K.
, 2001, “
Isothermal Surface Production and Regulation for High Heat Flux Applications Utilizing Porous Inserts
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2933
2947
.
9.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Ziskind
,
G.
, 2002, “
A Uniform Temperature Heat Sink for Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
16
), pp.
3275
3286
.
10.
Erickson
,
D.
, and
Li
,
D.
, 2004, “
Integrated Microfluidic Devices
,”
Anal. Chim. Acta
0003-2670,
507
(
1
), pp.
11
26
.
11.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2008, “
Analytical Characterization of Heat Transport Through Biological Media Incorporating Hyperthermia Treatment
,”
Int. J. Heat Mass Transfer
0017-9310, in press.
12.
Kupchella
,
K.
,
Clemons
,
C. B.
,
Golovaty
,
D.
, and
Young
,
G. W.
, 2006, “
An Asymptotic Analysis for Directional Solidification of a Diffusion-Dominated Binary System
,”
J. Cryst. Growth
0022-0248,
292
(
1
), pp.
111
124
.
13.
Brown
,
R. A.
, 1988, “
Theory of Transport Processes in Single Crystal Growth from the Melt
,”
AIChE J.
0001-1541,
34
(
6
), pp.
881
911
.
14.
McLean
,
M.
, 1983,
Directionally Solidified Materials for High Temperature Service
,
The Metals Society
,
London
.
15.
Kermanpur
,
A.
,
Rappaz
,
M.
,
Varahram
,
N.
, and
Davami
,
P.
, 2000, “
Thermal and Grain-Structure Simulation in a Land-Based Turbine Blade Directionally Solidified With the Liquid Metal Cooling Process
,”
Metall. Mater. Trans. B
1073-5615,
31
(
6
), pp.
1293
1304
.
16.
Wang
,
Y.
,
Amiri
,
A.
, and
Vafai
,
K.
, 1999, “
An Experimental Investigation of the Melting Process in a Rectangular Enclosure
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3659
3672
.
17.
Desai
,
C. P.
, and
Vafai
,
K.
, 1993, “
A Unified Critical Re-examination of the Melting Process in a Cavity
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
1072
1075
.
18.
Wilson
,
R. N.
, 1999,
Reflecting Telescope Optics II: Manufacture, Testing, Alignment, Modern Techniques
,
Springer
,
New York
.
19.
Barnes
,
W. P.
, 1966, “
Some Effects of Aerospace Thermal Environments on High-Acuity Optical Systems
,”
Appl. Opt.
0003-6935,
5
(
5
), pp.
701
711
.
20.
Sozen
,
M.
, and
Vafai
,
K.
, 1990, “
Analysis of the Non-Thermal Equilibrium Condensing Flow of a Gas Through a Packed Bed
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
1247
1261
.
21.
Vafai
,
K.
, and
Sozen
,
M.
, 1990, “
Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
690
699
.
22.
Sozen
,
M.
, and
Vafai
,
K.
, 1993, “
Longitudinal Heat Dispersion in Packed Beds with Real Gas Flow
,”
J. Thermophys. Heat Transfer
0887-8722,
7
, pp.
153
157
.
23.
Sozen
,
M.
, and
Vafai
,
K.
, 1991, “
Analysis of Oscillating Compressible Flow Through a Packed Bed
,”
Int. J. Heat Fluid Flow
0142-727X,
12
, pp.
130
136
.
24.
Vafai
,
K.
, and
Sozen
,
M.
, 1990, “
An Investigation of a Latent Heat Storage Packed Bed and Condensing Flow Through it
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
1014
1022
.
25.
Amiri
,
A.
, and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
939
954
.
26.
Amiri
,
A.
,
Vafai
,
K.
, and
Kuzay
,
T. M.
, 1995, “
Effect of Boundary Conditions on Non-Darcian Heat Transfer Through Porous Media and Experimental Comparisons
,”
Numer. Heat Transfer, Part A
1040-7782,
27
, pp.
651
664
.
27.
Alazmi
,
B.
, and
Vafai
,
K.
, 2002, “
Constant Wall Heat Flux Boundary Conditions in Porous Media Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3071
3087
.
28.
Lee
,
D. Y.
, and
Vafai
,
K.
, 1999, “
Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
423
435
.
29.
Marafie
,
A.
, and
Vafai
,
K.
, 2001, “
Analysis of Non-Darcian Effects on Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4401
4411
.
30.
Poulikakos
,
D.
, and
Renken
,
K.
, 1987, “
Forced Convection in a Channel Filled With Porous Medium, Including the Effects of Flow Inertia, Variable Porosity, and Brinkman Friction
,”
ASME J. Heat Transfer
0022-1481,
109
(
4
), pp.
880
888
.
31.
Vafai
,
K.
, and
Kim
,
S.
, 1989, “
Forced Convection in a Channel Filled With Porous Medium—An Exact Solution
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
1103
1106
.
32.
Hunt
,
M. L.
, and
Tien
,
C. L.
, 1988, “
Effects of Thermal Dispersion on Forced Convection in Fibrous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
2
), pp.
301
309
.
33.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2008, “
A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
15-16
), pp.
3701
3711
.
34.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
557
565
.
35.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
, 2002, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3781
3793
.
36.
Combarnous
,
M. A.
, and
Bories
,
S. A.
, 1975, “
Hydrothermal Convection in Saturated Porous Media
,”
Adv. Hydrosci.
0065-2768,
10
, pp.
231
307
.
37.
Cheng
,
P.
, 1978, “
Heat Transfer in Geothermal Systems
,”
Adv. Heat Transfer
0065-2717,
14
, pp.
1
105
.
38.
Tien
,
C. L.
, and
Vafai
,
K.
, 1989, “
Convective and Radiative Heat Transfer in Porous Media
,”
Adv. Appl. Mech.
0065-2156,
27
, pp.
225
282
.
39.
Hadim
,
H.
, and
Vafai
,
K.
, 2000, “
Overview of Current Computational Studies of Heat Transfer in Porous Media and their Applications—Forced Convection and Multiphase Transport
,”
Advances in Numerical Heat Transfer
,
Taylor & Francis
,
New York
, pp.
291
330
.
40.
Vafai
,
K.
, and
Hadim
,
H.
, 2000, “
Overview of Current Computational Studies of Heat Transfer in Porous Media and their Applications—Natural Convection and Mixed Convection
,”
Advances in Numerical Heat Transfer
,
Taylor & Francis
,
New York
, pp.
331
371
.
41.
2006,
FLUENT 6.3 User’s Guide
, Lebanon US.
42.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
This content is only available via PDF.
You do not currently have access to this content.