Superlattices with thermal-insulating behaviors have been studied to design thermoelectric materials but affect heat transfer in only one main direction and often show many cracks and dislocations near their layer interfaces. Quantum-dot (QD) self-assembly is an emerging epitaxial technology to design ultradense arrays of germanium QDs in silicon for many promising electronic and photonic applications such as quantum computing, where accurate QD positioning is required. We theoretically demonstrate that high-density three-dimensional (3D) arrays of molecular-size self-assembled Ge QDs in Si can also show very low thermal conductivity in the three spatial directions. This physical property can be considered in designing new silicon-based crystalline thermoelectric devices, which are compatible with the complementary metal-oxide-semiconductor (CMOS) technologies. To obtain a computationally manageable model of these nanomaterials, we investigate their thermal-insulating behavior with atomic-scale 3D phononic crystals: A phononic-crystal period or supercell consists of diamond-cubic (DC) Si cells. At each supercell center, we substitute Si atoms by Ge atoms in a given number of DC unit cells to form a boxlike nanoparticle (i.e., QD). The nanomaterial thermal conductivity can be reduced by several orders of magnitude compared with bulk Si. A part of this reduction is due to the significant decrease in the phonon group velocities derived from the flat dispersion curves, which are computed with classical lattice dynamics. Moreover, according to the wave-particle duality at small scales, another reduction is obtained from multiple scattering of the particlelike phonons in nanoparticle clusters, which breaks their mean free paths (MFPs) in the 3D nanoparticle array. However, we use an incoherent analytical model of this particlelike scattering. This model leads to overestimations of the MFPs and thermal conductivity, which is nevertheless lower than the minimal Einstein limit of bulk Si and is reduced by a factor of at least 165 compared with bulk Si in an example nanomaterial. We expect an even larger decrease in the thermal conductivity than that predicted in this paper owing to multiple scattering, which can lead to a ZT much larger than unity.

1.
Kim
,
W.
,
Zide
,
J.
,
Gossard
,
A.
,
Klenov
,
D.
,
Stemmer
,
S.
,
Shakouri
,
A.
, and
Majumdar
,
A.
, 2006, “
Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
045901
.
2.
Chen
,
G.
, 1999, “
Phonon Wave Heat Conduction in Thin Films Superlattices
,”
ASME J. Heat Transfer
0022-1481,
121
(
4
), pp.
945
953
.
3.
Hochbaum
,
A. I.
,
Chen
,
R.
,
Delgado
,
R. D.
,
Liang
,
W.
,
Garnett
,
E. C.
,
Najarian
,
M.
,
Majumdar
,
A.
, and
Yang
,
P.
, 2008, “
Enhanced Thermoelectric Performance of Rough Silicon Nanowires
,”
Nature (London)
0028-0836,
451
, pp.
163
167
.
4.
Boukai
,
A. I.
,
Bunimovich
,
Y.
,
Tahir-Kheli
,
J.
,
Yu
,
J. -K.
,
Goddard
,
W. A.
, III
, and
Heath
,
J. R.
, 2008, “
Silicon Nanowires as Efficient Thermoelectric Materials
,”
Nature (London)
0028-0836,
451
, pp.
168
171
.
5.
Volz
,
S.
, and
Chen
,
G.
, 1999, “
Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires
,”
Appl. Phys. Lett.
0003-6951,
75
(
14
), pp.
2056
2058
.
6.
Yang
,
R.
, and
Chen
,
G.
, 2004, “
Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites
,”
Phys. Rev. B
0163-1829,
69
, p.
195316
.
7.
Chiritescu
,
C.
,
Cahill
,
D. G.
,
Nguyen
,
N.
,
Johnson
,
D.
,
Bodapati
,
A.
,
Keblinski
,
P.
, and
Zschack
,
P.
, 2007, “
Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals
,”
Science
0036-8075,
315
, pp.
351
353
.
8.
Hsu
,
K. F.
,
Loo
,
S.
,
Guo
,
F.
,
Chen
,
W.
,
Dyck
,
J. S.
,
Uher
,
C.
,
Hogan
,
T.
,
Polychroniadis
,
E. K.
, and
Kanatzidis
,
M. G.
, 2004, “
Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials With High Figure of Merit
,”
Science
0036-8075,
303
, pp.
818
821
.
9.
Harman
,
T. C.
,
Taylor
,
P. J.
,
Walsh
,
M. P.
, and
LaForge
,
B. E.
, 2002, “
Quantum Dot Superlattice Thermoelectric Materials and Devices
,”
Science
0036-8075,
297
, pp.
2229
2232
.
10.
Venkatasubramanian
,
R.
,
Siivola
,
E.
,
Colpitts
,
T.
, and
O’Quinn
,
B.
, 2001, “
Thin-Film Thermoelectric Devices With High Room-Temperature Figures of Merit
,”
Nature (London)
0028-0836,
413
, pp.
597
602
.
11.
Volz
,
S.
,
Lemonnier
,
D.
, and
Saulnier
,
J. B.
, 2001, “
Clamped Nanowire Thermal Conductivity Based on Phonon Transport Equation
,”
Microscale Thermophys. Eng.
1089-3954,
5
, pp.
191
207
.
12.
Jeng
,
M. -S.
,
Yang
,
R.
,
Song
,
D.
, and
Chen
,
G.
, 2008, “
Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
042410
.
13.
Chen
,
G.
, and
Shakouri
,
A.
, 2002, “
Heat Transfer in Nanostructures for Solid-State Energy Conversion
,”
ASME J. Heat Transfer
0022-1481,
124
(
2
), pp.
242
342
.
14.
Yu
,
C.
,
Saha
,
S.
,
Zhou
,
J.
, and
Shi
,
L.
, 2006, “
Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber
,”
ASME J. Heat Transfer
0022-1481,
128
(
3
), pp.
234
239
.
15.
Liu
,
W.
, and
Asheghi
,
M.
, 2006, “
Thermal Conductivity Measurements of Ultra-Thin Single Crystal Silicon Layers
,”
ASME J. Heat Transfer
0022-1481,
128
(
1
), pp.
75
83
.
16.
Bulusu
,
A.
, and
Walker
,
D. G.
, 2007, “
Modeling of Thermoelectric Properties of Semi-Conductor Thin Films With Quantum and Scattering Effects
,”
ASME J. Heat Transfer
0022-1481,
129
(
4
), pp.
492
499
.
17.
Bonello
,
B.
,
Charles
,
C.
, and
Ganot
,
F.
, 2007, “
Lamb Waves in Plates Covered by a Two-Dimensional Phononic Film
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
021909
.
18.
Sun
,
J. -H.
, and
Wu
,
T. -T.
, 2006, “
Propagation of Surface Acoustic Waves Through Sharply Bent Two-dimensional Phononic Crystal Waveguides Using a Finite-Difference Time-Domain Method
,”
Phys. Rev. B
0163-1829,
74
, p.
174305
.
19.
Wu
,
T. -T.
,
Hsu
,
C. -H.
, and
Sun
,
J. -H.
, 2006, “
Design of a Highly Magnified Directional Acoustic Source Based on the Resonant Cavity of Two-Dimensional Phononic Crystals
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
171912
.
20.
Wu
,
T. -T.
,
Huang
,
Z. -G.
, and
Lin
,
S.
, 2004, “
Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystal Consisting of Materials With General Anisotropy
,”
Phys. Rev. B
0163-1829,
69
, p.
094301
.
21.
Khelif
,
A.
,
Choujaa
,
A.
,
Benchabane
,
S.
,
Djafari-Rouhani
,
B.
, and
Laude
,
V.
, 2004, “
Guiding and Bending of Acoustic Waves in Highly Confined Phononic Crystal Waveguides
,”
Appl. Phys. Lett.
0003-6951,
84
(
22
), pp.
4400
4402
.
22.
Chen
,
H.
,
Luo
,
X.
, and
Ma
,
H.
, 2007, “
Scattering of Elastic Waves by Elastic Spheres in a NaCl-Type Phononic Crystal
,”
Phys. Rev. B
0163-1829,
75
, p.
024306
.
23.
Yang
,
S.
,
Page
,
J. H.
,
Liu
,
Z.
,
Cowan
,
M. L.
,
Chan
,
C. T.
, and
Sheng
,
P.
, 2004, “
Focusing of Sound in a 3D Phononic Crystal
,”
Phys. Rev. Lett.
0031-9007,
93
, p.
024301
.
24.
Yang
,
S.
,
Page
,
J. H.
,
Liu
,
Z.
,
Cowan
,
M. L.
,
Chan
,
C. T.
, and
Sheng
,
P.
, 2002, “
Ultrasound Tunneling Through 3D Phononic Crystals
,”
Phys. Rev. Lett.
0031-9007,
88
, p.
104301
.
25.
Liu
,
Z.
,
Chan
,
C. T.
,
Sheng
,
P.
,
Goertzen
,
A. L.
, and
Page
,
J. H.
, 2000, “
Elastic Wave Scattering by Periodic Structures of Spherical Objects: Theory and Experiment
,”
Phys. Rev. B
0163-1829,
62
(
4
), pp.
2446
2457
.
26.
Tommaseo
,
G.
,
Petekidis
,
G.
,
Steffen
,
W.
,
Fytas
,
G.
,
Schofield
,
A. B.
, and
Stefanou
,
N.
, 2007, “
Hypersonic Acoustic Excitations in Binary Colloidal Crystals: Big Versus Small Hard Sphere Control
,”
J. Chem. Phys.
0021-9606,
126
, p.
014707
.
27.
Yakimov
,
A. I.
,
Dvurechenskii
,
A. V.
, and
Nikiforov
,
A. I.
, 2006, “
Germanium Self-Assembled Quantum Dots in Silicon for Nano- and Optoelectronics
,”
J. Nanoelectron. Optoelectron.
1555-130X,
1
(
2
), pp.
119
175
.
28.
Guise
,
O.
,
Yates
,
J. T.
, Jr.
,
Levy
,
J.
,
Ahner
,
J.
,
Vaithyanathan
,
V.
, and
Schlom
,
D. G.
, 2005, “
Patterning of Sub-10-nm Ge Islands on Si(100) by Directed Self-Assembly
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
171902
.
29.
Berbezier
,
I.
,
Karmous
,
A.
,
Ronda
,
A.
,
Sgarlata
,
A.
,
Balzarotti
,
A.
,
Castrucci
,
P.
,
Scarselli
,
M.
, and
De Crescenzi
,
M.
, 2006, “
Growth of Ultrahigh-Density Quantum-Confined Germanium Dots on SiO2 Thin Films
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
063122
.
30.
Gray
,
J. L.
,
Hull
,
R.
, and
Floro
,
J. A.
, 2006, “
Periodic Arrays of Epitaxial Self-Assembled SiGe Quantum Dot Molecules Grown on Patterned Si Substrates
,”
J. Appl. Phys.
0021-8979,
100
, p.
084312
.
31.
Kiravittaya
,
S.
,
Heidemeyer
,
H.
, and
Schmidt
,
O. G.
, 2005, “
Lateral Quantum-Dot Replication in Three-Dimensional Quantum-Dot Crystals
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
263113
.
32.
Kar
,
G. S.
,
Kiravittaya
,
S.
,
Stoffel
,
M.
, and
Schmidt
,
O. G.
, 2004, “
Material Distribution Across the Interface of Random and Ordered Island Arrays
,”
Phys. Rev. Lett.
0031-9007,
93
, p.
246103
.
33.
Karmous
,
A.
,
Cuenat
,
A.
,
Ronda
,
A.
,
Berbezier
,
I.
,
Atha
,
S.
, and
Hull
,
R.
, 2004, “
Ge Dot Organization on Si Substrates Patterned by Focused Ion Beam
,”
Appl. Phys. Lett.
0003-6951,
85
, pp.
6401
6403
.
34.
Zhong
,
Z.
,
Halilovic
,
A.
,
Fromherz
,
T.
,
Schäffler
,
F.
, and
Bauer
,
G.
, 2003, “
Two-Dimensional Periodic Positioning of Self-Assembled Ge Islands on Prepatterned Si (001) Substrates
,”
Appl. Phys. Lett.
0003-6951,
82
(
26
), pp.
4779
4781
.
35.
Lee
,
H.
,
Johnson
,
J. A.
,
He
,
M. Y.
,
Speck
,
J. S.
, and
Petroff
,
P. M.
, 2001, “
Strain-Engineered Self-Assembled Semiconductor Quantum Dot Lattices
,”
Appl. Phys. Lett.
0003-6951,
78
(
1
), pp.
105
107
.
36.
Khitun
,
A.
,
Balandin
,
A.
,
Liu
,
J. L.
, and
Wang
,
K. L.
, 2000, “
In-Plane Lattice Thermal Conductivity of a Quantum-Dot Superlattice
,”
J. Appl. Phys.
0021-8979,
88
(
2
), pp.
696
699
.
37.
Cahill
,
D. G.
,
Watson
,
S. K.
, and
Pohl
,
R. O.
, 1992, “
Lower Limit to the Thermal Conductivity of Disordered Crystals
,”
Phys. Rev. B
0163-1829,
46
(
10
), pp.
6131
6140
.
38.
Kim
,
W.
, and
Majumdar
,
A.
, 2006, “
Phonon Scattering Cross Section of Polydispersed Spherical Nanoparticles
,”
J. Appl. Phys.
0021-8979,
99
, p.
084306
.
39.
Dove
,
M. T.
, 1993,
Introduction to Lattice Dynamics
(
Cambridge Topics in Mineral Physics and Chemistry
Vol.
4
),
Cambridge University Press
,
Cambridge, UK
.
40.
Jian
,
Z.
,
Kaiming
,
Z.
, and
Xide
,
X.
, 1990, “
Modification of Stillinger–Weber Potentials for Si and Ge
,”
Phys. Rev. B
0163-1829,
41
(
18
), pp.
12915
12918
.
41.
Chalopin
,
Y.
,
Gillet
,
J.-N.
, and
Volz
,
S.
, 2008, “
Predominance of Thermal Contact Resistance in a Silicon Nanowire on a Planar Substrate
,”
Phys. Rev. B
0163-1829,
77
(
23
), p.
233309
.
43.
Ziman
,
J. M.
, 1960, “
Electrons and Phonons: The Theory of Transport Phenomena in Solids
,”
Oxford Classic Texts in the Physical Sciences
,
Oxford University Press
,
Oxford, UK
.
44.
Majumdar
,
A.
, 1993, “
Microscale Heat Conduction in Dielectric Thin Films
,”
ASME J. Heat Transfer
0022-1481,
115
(
1
), pp.
7
16
.
45.
Vo
,
T. T. M.
,
Williamson
,
A. J.
,
Lordi
,
V.
, and
Galli
,
G.
, 2008, “
Atomistic Design of Thermoelectric Properties of Silicon Nanowires
,”
Nano Lett.
1530-6984,
8
(
4
), pp.
1111
1114
.
46.
Glassbrenner
,
C. J.
, and
Slack
,
G. A.
, 1964, “
Thermal Conductivity of Silicon and Germanium From 3 K
to the Melting Point,”
Phys. Rev.
0096-8250,
134
(
4A
), pp.
A1058
A1069
.
47.
Slack
,
G. A.
, and
Galginaitis
,
S.
, 1964, “
Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe
,”
Phys. Rev.
0096-8250,
133
(
1A
), pp.
A253
A268
.
48.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2004, “
Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation
,”
Phys. Rev. B
0163-1829,
69
, p.
094303
.
49.
Feynman
,
R. P.
, and
Hibbs
,
A. R.
, 1965,
Quantum Mechanics and Path Integrals
,
McGraw-Hill
,
New York
.
50.
Klemens
,
P. G.
, 1955, “
The Scattering of Low-Frequency Lattice Waves by Static Imperfections
,”
Proc. Phys. Soc., London, Sect. A
0370-1298,
68
, pp.
1113
1128
.
51.
Klemens
,
P. G.
, 1958,
Solid State Physics
, Vol.
7
,
F.
Seitz
and
D.
Turn
, eds.,
Academic
,
New York
.
52.
Turk
,
L. A.
, and
Klemens
,
P. G.
, 1974, “
Phonon Scattering by Impurity Platelet Precipitates in Diamond
,”
Phys. Rev. B
0556-2805,
9
(
10
), pp.
4422
4428
.
53.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 1998,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
54.
van de Hulst
,
H. C.
, 1981,
Light Scattering by Small Particles
,
Dover
,
New York
.
55.
Berman
,
R.
,
Foster
,
E. L.
, and
Ziman
,
J. M.
, 1956, “
The Thermal Conductivity of Dielectric Crystals: The Effect of Isotopes
,”
Proc. R. Soc. London, Ser. A.
,
237
, pp.
344
354
. 0080-4630
56.
Kittel
,
C.
, 2005,
Introduction to Solid State Physics
,
8th ed.
,
Wiley
,
New York
.
You do not currently have access to this content.