Homogeneous nucleation processes are characterized by the nucleation rate and the critical droplet size. Molecular dynamics simulation is applied for studying homogeneous nucleation during condensation of supersaturated vapors of methane and ethane. The results are compared with the classical nucleation theory (CNT) and the Laaksonen–Ford–Kulmala (LFK) model that introduces the size dependence of the specific surface energy. It is shown for the nucleation rate that the Yasuoka–Matsumoto method and the mean first passage time method lead to considerably differing results. Even more significant deviations are found between two other approaches to the critical droplet size, based on the maximum of the Gibbs free energy of droplet formation (Yasuoka–Matsumoto) and the supersaturation dependence of the nucleation rate (nucleation theorem). CNT is found to agree reasonably well with the simulation results, whereas LFK leads to large deviations at high temperatures.

1.
Lee
,
S. -H.
,
Reeves
,
J. M.
,
Wilson
,
J. C.
,
Hunton
,
D. E.
,
Viggiano
,
A. A.
,
Miller
,
T. M.
,
Ballenthin
,
J. O.
, and
Lait
,
L. R.
, 2003, “
Particle Formation by Ion Nucleation in the Upper Troposphere and Lower Stratosphere
,”
Science
0036-8075,
301
, pp.
1886
1889
.
2.
Määttänen
,
A.
,
Vehkamäki
,
H.
,
Lauri
,
A.
,
Merikallio
,
S.
,
Kauhanen
,
J.
,
Savijärvi
,
H.
, and
Kulmala
,
M.
, 2005, “
Nucleation Studies in the Martian Atmosphere
,”
J. Geophys. Res.
0148-0227,
110
, p.
E02002
.
3.
Curtius
,
J.
, 2006, “
Nucleation of Atmospheric Aerosol Particles
,”
C. R. Phys.
,
7
, pp.
1027
1045
. 1631-0705
4.
Volmer
,
M.
, and
Weber
,
A.
, 1926, “
Keimbildung in übersättigten Gebilden
,”
Z. Phys. Chem. (Leipzig)
,
119
, pp.
277
301
. 0323-4479
5.
Feder
,
J.
,
Russell
,
K. C.
,
Lothe
,
J.
, and
Pound
,
G. M.
, 1966, “
Homogeneous Nucleation and Growth of Droplets in Vapours
,”
Adv. Phys.
0001-8732,
15
(
1
), pp.
111
178
.
6.
Laaksonen
,
A.
,
Ford
,
I. J.
, and
Kulmala
,
M.
, 1994, “
Revised Parametrization of the Dillmann–Meier Theory of Homogeneous Nucleation
,”
Phys. Rev. E
1063-651X,
49
(
6
), pp.
5517
5524
.
7.
Tanaka
,
K. K.
,
Kawamura
,
K.
,
Tanaka
,
H.
, and
Nakazawa
,
K.
, 2005, “
Tests of the Homogeneous Nucleation Theory With Molecular-Dynamics Simulations
,”
J. Chem. Phys.
0021-9606,
122
, p.
184514
.
8.
Tolman
,
R. C.
, 1949, “
The Effect of Droplet Size on Surface Tension
,”
J. Chem. Phys.
0021-9606,
17
(
3
), pp.
333
337
.
9.
Kirkwood
,
J. G.
, and
Buff
,
F. P.
, 1949, “
The Statistical Mechanical Theory of Surface Tension
,”
J. Chem. Phys.
0021-9606,
17
(
3
), pp.
338
343
.
10.
Vrabec
,
J.
,
Kedia
,
G. K.
,
Fuchs
,
G.
, and
Hasse
,
H.
, 2006, “
Comprehensive Study on Vapour-Liquid Coexistence of the Truncated and Shifted Lennard–Jones Fluid Including Planar and Spherical Interface Properties
,”
Mol. Phys.
0026-8976,
104
(
9
), pp.
1509
1527
.
11.
Napari
,
I.
, and
Laaksonen
,
A.
, 2007, “
Surface Tension and Scaling of Critical Nuclei in Diatomic and Triatomic Fluids
,”
J. Chem. Phys.
0021-9606,
126
, p.
134503
.
12.
Yasuoka
,
K.
, and
Matsumoto
,
M.
, 1998, “
Molecular Dynamics of Homogeneous Nucleation in the Vapor Phase
,”
J. Chem. Phys.
0021-9606,
109
(
19
), pp.
8451
8470
.
13.
Haber
,
F.
, 1922, “
Über amorphe Niederschläge und krystallisierte Sole
,”
Ber. Dtsch. Chem. Ges. B
0365-9488,
55
, pp.
1717
1733
.
14.
Matsubara
,
H.
,
Koishi
,
T.
,
Ebisuzaki
,
T.
, and
Yasuoka
,
K.
, 2007, “
Extended Study of Molecular Dynamics Simulation of Homogeneous Vapor-Liquid Nucleation of Water
,”
J. Chem. Phys.
0021-9606,
127
, p.
214507
.
15.
Nellas
,
R. B.
,
Chen
,
B.
, and
Siepmann
,
J. I.
, 2007, “
Dumbbells and Onions in Ternary Nucleation
,”
Phys. Chem. Chem. Phys.
,
9
, pp.
2779
2781
. 1463-9076
16.
Wedekind
,
J.
,
Reguera
,
D.
, and
Strey
,
R.
, 2006, “
Finite-Size Effects in Simulation of Nucleation
,”
J. Chem. Phys.
0021-9606,
125
, p.
214505
.
17.
Horsch
,
M.
,
Vrabec
,
J.
,
Bernreuther
,
M.
,
Grottel
,
S.
,
Reina
,
G.
,
Wix
,
A.
,
Schaber
,
K.
, and
Hasse
,
H.
, 2008, “
Homogeneous Nucleation in Supersaturated Vapors of Methane, Ethane, and Carbon Dioxide Predicted by Brute Force Molecular Dynamics
,”
J. Chem. Phys.
0021-9606,
128
, p.
164510
.
18.
Römer
,
F.
, and
Kraska
,
T.
, 2007, “
Homogeneous Nucleation and Growth in Supersaturated Zinc Vapor Investigated by Molecular Dynamics Simulation
,”
J. Chem. Phys.
0021-9606,
127
, p.
234509
.
19.
Oxtoby
,
D. W.
, and
Kashchiev
,
D.
, 1994, “
A General Relation Between the Nucleation Work and the Size of the Nucleus in Multicomponent Nucleation
,”
J. Chem. Phys.
0021-9606,
100
(
10
), pp.
7665
7671
.
20.
Linhart
,
A.
,
Chen
,
C.
,
Vrabec
,
J.
, and
Hasse
,
H.
, 2005, “
Thermal Properties of the Metastable Supersaturated Vapor of the Lennard–Jones Fluid
,”
J. Chem. Phys.
0021-9606,
122
, p.
144506
.
21.
Nie
,
C.
,
Geng
,
J.
, and
Marlow
,
W. H.
, 2008, “
Study of Thermal Properties of the Metastable Supersaturated Vapor With the Restricted Ensemble
,”
Physica A
,
387
, pp.
1433
1438
. 0378-4371
22.
Baidakov
,
V. G.
,
Protsenko
,
S. P.
, and
Kozlova
,
Z. R.
, 2008, “
Thermal and Caloric Equations of State for Stable and Metastable Lennard-Jones Fluids: I. Molecular-dynamics Simulations
,”
Fluid Phase Equilib.
,
263
, pp.
55
63
. 0378-3812
23.
Vrabec
,
J.
,
Stoll
,
J.
, and
Hasse
,
H.
, 2001, “
A Set of Molecular Models for Symmetric Quadrupolar Fluids
,”
J. Phys. Chem. B
1089-5647,
105
(
48
), pp.
12126
12133
.
24.
Trokhymchuk
,
A.
, and
Alejandre
,
J.
, 1999, “
Computer Simulations of Liquid/Vapor Interface in Lennard–Jones Fluids: Some Questions and Answers
,”
J. Chem. Phys.
0021-9606,
111
(
18
), pp.
8510
8523
.
25.
Shen
,
V. K.
,
Mountain
,
R. D.
, and
Errington
,
J. R.
, 2007, “
Comparative Study of the Effect of Tail Corrections of Surface Tension Determined by Molecular Simulation
,”
J. Phys. Chem. B
1089-5647,
111
(
22
), pp.
6198
6207
.
You do not currently have access to this content.