A multicomponent framework for energy conserving dissipative particle dynamics (DPD) is presented for the first time in both dimensional and dimensionless forms. Explicit definitions for unknown scaling factors that are consistent with DPD convention are found by comparing the present, general dimensionless governing equations to the standard DPD expressions in the literature. When the scaling factors are chosen based on the solvent in a multicomponent system, the system of equations reduces to a set that is easy to handle computationally. A computer code based on this multicomponent framework was validated, under the special case of identical components, for one-dimensional transient and one- and two-dimensional steady-state heat conduction in a random DPD solid. The results, which compare well with existing DPD works and with analytical solutions in one and two dimensions, show the promise of energy conserving DPD for modeling heat transfer at mesoscopic length scales.

1.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
0021-8979,
93
, pp.
793
818
.
2.
Stickel
,
J. J.
, and
Powell
,
R. L.
, 2005, “
Fluid Mechanics and Rheology of Dense Suspensions
,”
Annu. Rev. Fluid Mech.
0066-4189,
37
, pp.
129
149
.
3.
Koumoutsakos
,
P.
, 2005, “
Multiscale Flow Simulations Using Particle
,”
Annu. Rev. Fluid Mech.
0066-4189,
37
, pp.
457
487
.
4.
Español
,
P.
,
Serrano
,
M.
, and
Zuñiga
,
I.
, 1997, “
Coarse-Graining of a Fluid and Its Relation With Dissipative Particle Dynamics and Smoothed Particle Dynamics
,”
Int. J. Mod. Phys. C
0129-1831,
8
, pp.
899
908
.
5.
Allen
,
M. P.
, and
Tildesley
,
T.
J., 1989,
Computer Simulation of Liquids
,
Oxford University Press
,
New York
.
6.
Haile
,
J. M.
, 1992,
Molecular Dynamics Simulation: Elementary Methods
,
Wiley-Interscience
,
New York
.
7.
Padding
,
J. T.
, and
Louis
,
A. A.
, 2006, “
Hydrodynamic Interactions and Brownian Forces in Colloidal Suspensions: Coarse-Graining Over Time and Length Scales
,”
Phys. Rev. E
1063-651X,
74
,
031402
.
8.
Succi
,
S.
, 2001,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
,
Clarendon
,
Oxford
.
9.
Rivet
,
J. P.
, and
Boon
,
J. P.
, 2001,
Lattice Gas Hydrodynamics
,
Cambridge University Press
,
Cambridge
.
10.
Ermak
,
D. L.
, and
McCammon
,
J. A.
, 1978, “
Brownian Dynamics With Hydrodynamic Interactions
,”
J. Chem. Phys.
0021-9606,
69
, pp.
1352
1360
.
11.
Brady
,
J. F.
, and
Bossis
,
G.
, 1988, “
Stokesian Dynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
20
, pp.
111
157
.
12.
Hoogerbrugge
,
P. J.
, and
Koelman
,
J. M. V. A.
, 1992, “
Simulating Microscopic Hydrodynamic Phenomena With Dissipative Particle Dynamics
,”
Europhys. Lett.
0295-5075,
19
(
3
), pp.
155
160
.
13.
Español
,
P.
, and
Revenga
,
M.
, 2003, “
Smoothed Dissipative Particle Dynamics
,”
Phys. Rev. E
1063-651X,
67
, p.
026705
.
14.
Español
,
P.
, and
Warren
,
P.
, 1995, “
Statistical Mechanics of Dissipative Particle Dynamics
,”
Europhys. Lett.
0295-5075,
30
, pp.
191
196
.
15.
Coveney
,
P. V.
, and
Español
,
P.
, 1997, “
Dissipative Particle Dynamics for Interacting Multicomponent Systems
,”
J. Phys. A
0305-4470,
30
, pp.
779
784
.
16.
Español
,
P.
, 1995, “
Hydrodynamics From Dissipative Particle Dynamics
,”
Phys. Rev. E
1063-651X,
52
(
2
), pp.
1734
1742
.
17.
Groot
,
R. D.
, and
Warren
,
P. B.
, 1997, “
Dissipative Particle Dynamics: Bridging the Gap Between Atomistic and Mesoscopic Simulation
,”
J. Chem. Phys.
0021-9606,
107
(
11
), pp.
4423
4435
.
18.
Maiti
,
A.
, and
McGrother
,
S.
, 2004, “
Bead-Bead Interaction Parameters in Dissipative Particle Dynamics: Relation to Bead-Size, Solubility Parameter, and Surface Tension
,”
J. Chem. Phys.
0021-9606,
120
(
3
), pp.
1594
1601
.
19.
Groot
,
R. D.
, and
Rabone
,
K. L.
, 2001, “
Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and Rupture by Nonionic Surfactants
,”
Biophys. J.
,
81
, pp.
725
736
. 0006-3495
20.
Yamamoto
,
S.
,
Maruyama
,
Y.
, and
Hyodo
,
S.
, 2002, “
Dissipative Particle Dynamics Study of Spontaneous Vesicle Formation of Amphiphilic Molecules
,”
J. Chem. Phys.
0021-9606,
116
, pp.
5842
5849
.
21.
Ortiz
,
V.
,
Nielsen
,
S. O.
,
Discher
,
D. E.
,
Klein
,
M. L.
,
Lipowsky
,
R.
, and
Shillcock
,
J.
, 2005, “
Dissipative Particle Dynamics Simulations of Polymersomes
,”
J. Phys. Chem. B
1089-5647,
109
, pp.
17708
17714
.
22.
Coveney
,
P. V.
, and
Novik
,
K. E.
, 1996, “
Computer Simulations of Domain Growth and Phase Separation in Two-Dimensional Binary Immiscible Fluids Using Dissipative Particle Dynamics
,”
Phys. Rev. E
1063-651X,
54
(
5
), pp.
5134
5141
.
23.
Boek
,
E. S.
,
Coveney
,
P. V.
,
Lekkerkerker
,
H. N. W.
, and
van der Schoot
,
P.
, 1997, “
Simulating the Rheology of Dense Colloidal Suspensions Using Dissipative Particle Dynamics
,”
Phys. Rev. E
1063-651X,
55
(
3
), pp.
3124
3133
.
24.
Maiti
,
A.
,
Wescott
,
J.
, and
Kung
,
P.
, 2005, “
Nanotube-Polymer Composites: Insights From Flory–Huggins Theory and Mesoscale Simulations
,”
Mol. Simul.
0892-7022,
31
, pp.
143
149
.
25.
Marsh
,
C. A.
,
Backx
,
G.
, and
Ernst
,
M. H.
, 1997, “
Static and Dynamic Properties of Dissipative Particle Dynamics
,”
Phys. Rev. E
1063-651X,
56
(
2
), pp.
1676
1691
.
26.
Avalos
,
J. B.
, and
Mackie
,
A. D.
, 1997, “
Dissipative Particle Dynamics With Energy Conservation
,”
Europhys. Lett.
0295-5075,
40
(
2
), pp.
141
146
.
27.
Español
,
P.
, 1997, “
Dissipative Particle Dynamics With Energy Conservation
,”
Europhys. Lett.
0295-5075,
40
(
6
), pp.
631
636
.
28.
Ripoll
,
M.
,
Español
,
P.
, and
Ernst
,
M. H.
, 1998, “
Dissipative Particle Dynamics With Energy Conservation: Heat Conduction
,”
Int. J. Mod. Phys. C
0129-1831,
9
, pp.
1329
1338
.
29.
Ripoll
,
M.
, and
Español
,
P.
, 2000, “
Heat Conduction Modeling With Energy Conservation Dissipative Particle Dynamics
,”
Int. J. of Heat and Technology
,
18
, pp.
57
61
.
30.
Mackie
,
A.
,
Bonet
,
D.
,
Avalos
,
J.
, and
Navas
,
V.
, 1999, “
Dissipative Particle Dynamics With Energy Conservation: Modeling of Heat Flow
,”
Phys. Chem. Chem. Phys.
1463-9076,
1
, pp.
2039
2049
.
31.
Ripoll
,
M.
, and
Ernst
,
M. H.
, 2005, “
Model System for Classical Fluids Out of Equilibrium
,”
Phys. Rev. E
1063-651X,
71
,
041104
.
32.
Chaudhri
,
A.
, and
Lukes
,
J. R.
, 2008, “
Multicomponent Dissipative Particle Dynamics: Formulation of a General Framework for Simulations of Complex Fluids
,”
Int. J. Numer. Methods Fluids
0271-2091, in press.
33.
Ripoll
,
M.
, 2002, “
Kinetic Theory of Dissipative Particle Dynamics Models
,” Ph.D. thesis, Universidad Nacional de Educación a Distancia, Madrid.
34.
Gardiner
,
C. W.
, 2004,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
,
Springer-Verlag
,
Berlin
.
35.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
, 2002,
Fundamentals of Fluid Mechanics
,
4th ed.
,
Wiley
,
New York
.
36.
Kundu
,
P. K.
, and
Cohen
,
I. M.
, 2008,
Fluid Mechanics
,
4th ed.
,
Academic
,
Amsterdam
.
37.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
Wiley
,
Hoboken, NJ
.
38.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1986,
Conduction of Heat in Solids
,
2nd ed.
,
Oxford University Press
,
New York
.
39.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
, 1996, “
VMD-Visual Molecular Dynamics
,”
J. Mol. Graphics
0263-7855,
14
(
1
), pp.
33
38
.
You do not currently have access to this content.