The thermal behavior of a gas confined between two parallel walls is investigated. Wall effects such as hydrophobic or hydrophilic wall interactions are studied, and the effect on the heat flux and other characteristic parameters such as density and temperature is shown. For a dilute gas, the dependence on gas-wall interactions of the temperature profile between the walls for the incident and reflected molecules is obtained using molecular dynamics (MD). From these profiles, the effective accommodation coefficients for different interactions and different mass fluid/wall ratio are derived. We show that Monte Carlo (MC) with Maxwell boundary conditions based on the accommodation coefficient gives good results for heat flux predictions when compared with pure molecular dynamics simulations. We use these effective coefficients to compute the heat flux predictions for a dense gas using MD and MC with Maxwell-like boundary conditions.

1.
Schmidt
,
R. R.
, and
Notohardjono
,
B.
, 2002, “
‘High and Server Low Temperature Cooling
,”
IBM J. Res. Dev.
,
46
, pp.
739
751
. 0018-8646
2.
Bird
,
G.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Clarendon
,
Oxford
.
3.
Kucaba-Pietal
,
A.
, and
Zbigniew Walenta
,
Z.
, 2004, “
Size and Wall Effects in Water Flows in Nanochannels
,”
International Journal Turbulence
,
10
, pp.
77
81
.
4.
Frenkel
,
D.
, and
Smit
,
B.
, 1996,
Understanding Molecular Simulation
,
Academic
,
San Diego, CA
.
5.
Frezzotti
,
A.
, 1997, “
A Particle Scheme for the Numerical Solution of the Enskog Equation
,”
Phys. Fluids
1070-6631,
9
(
5
), pp.
1329
1335
.
6.
Montanero
,
J.
, and
Santos
,
A.
, 1996, “
Monte Carlo Simulation Method for the Enskog Equation
,”
Phys. Rev. E
1063-651X,
54
, pp.
438
444
.
7.
Montanero
,
J.
, and
Santos
,
A.
, 1997, “
Simulation of the Enskog Equation A La Bird
,”
Phys. Fluids
1070-6631,
9
, pp.
2057
2060
.
8.
Nanbu
,
K.
, 1986, “
Theoretical Basis of the Direct Simulation Monte Carlo Method
,”
Proceedings of the 15th International Symposium on RGD
, Vol.
1
,
V.
Boffi
and
C.
Cercignani
, eds., pp.
369
383
.
9.
Wachman
,
H. Y.
, 1993, “
Thermal Accommodation Coefficient: The Contributions of Lloyd Brewster Thomas
,”
Progress in Astronautics and Aeronautics, Rarefied Gas Dynamics
, Vol.
158
,
A. R.
Seebass
,
B. D.
Shizgal
, and
D. P.
Weaver
, eds.,
AIAA
,
Washington, DC
, p.
461
.
10.
Lord
,
R. G.
, 1991, “
Some Extensions to the Cercignani-Lampis Gas-Surface Scattering Model
,”
Phys. Fluids A
0899-8213,
3
, pp.
706
710
.
11.
Cercignani
,
C.
, and
Lampis
,
M.
, 1971, “
Kinetic Models for Gas-Surface Interactions
,”
Transp. Theory Stat. Phys.
0041-1450,
1
, pp.
101
114
.
12.
Cieplak
,
M.
,
Koplik
,
J.
, and
Banavar
,
J.
, 1999, “
Applications of Statistical Mechanics in Subcontinuum Fluid Mechanics
,”
Physica A
0378-4371,
274
, pp.
281
293
.
13.
Devienne
,
F.
,
Souquet
,
J.
, and
Roustan
,
J.
, 1966, “
Study of the Scattering of High Energy Molecules by Various Surfaces
,”
Advanced in Applied Mechanics, Suppl. 3, Rarefied Gas Dynamics
, Vol.
2
,
J. H.
Leeuw
, ed.,
Academic
,
New York
, p.
584
.
14.
Gregory
,
J.
, and
Peters
,
P.
, 1986, “
A Measurement of the Angular Distribution of 5 eV Atomic Oxygen Scattered of a Solid Surface in Earth Orbit
,”
Rarefied Gas Dynamics
, Vol.
1
,
V.
Boffi
and
C.
Cercignani
, eds.,
Academic
,
New York
, p.
644
.
15.
Yamamoto
,
K.
,
Takeuchi
,
H.
, and
Hyakutake
,
T.
, 2006, “
Characteristics of Reflected Gas Molecules at a Solid Surface
,”
Phys. Fluids
1070-6631,
18
, p.
046103
.
16.
Matsui
,
J.
, and
Matsumoto
,
Y.
, 1993, “
Study of Scattering Process in Gas-Surface Interactions
,”
Progress in Astronautics and Aeronautics, Rarefied Gas Dynamics
, Vol.
158
,
A. R.
Seebass
,
B. D.
Shizgal
, and
D. P.
Weaver
, eds.,
AIAA
,
Washington, DC
, p.
515
.
17.
Yamanishi
,
N.
, and
Matsumoto
,
Y.
, 1999, “
The Multi-Stage Reflection Model for DSMC Calculations
,”
Rarefied Gas Dynamics
, Vol.
1
,
R.
Brun
,
et al.
, eds.,
Cépaduès-Éditions
,
Toulouse, France
, p.
421
.
18.
Chirita
,
V.
,
Pailthorpe
,
B.
, and
Collins
,
R.
, 1993, “
Molecular Dynamics Study of Low-Energy Ar Scattering by the Ni(001) Surface
,”
J. Phys. D
0022-3727,
26
, pp.
133
142
.
19.
Kimura
,
T.
, and
Maruyama
,
S.
, 2002, “
Molecular Dynamics Simulation of Water Droplet in Contact With Platinum Surface
,”
12th International Heat Transfer Conference
, pp.
537
542
.
20.
Markvoort
,
A.
,
Hilbers
,
P.
, and
Nedea
,
S.
, 2005, “
Molecular Dynamics Study of the Influence of Wall-Gas Interactions on Heat Flow in Nanochannels
,”
Phys. Rev. E
1063-651X,
71
, p.
066702
.
21.
Nedea
,
S.
,
Markvoort
,
A.
,
Frijns
,
A.
,
van Steenhoven
,
A.
, and
Hilbers
,
P.
, 2005, “
Hybrid Method Coupling Molecular Dynamics and Monte Carlo Simulations to Study the Properties of Gases in Micro and Nanochannels
,”
Phys. Rev. E
1063-651X,
72
, pp.
016705
.
22.
Yamamoto
,
K.
,
Takeuchi
,
H.
, and
Hyakutake
,
T.
, 2003, “
Effect of Wall Characteristics on the Behaviors of Reflected Gas Molecules in a Thermal Problem
,”
Rarefied Gas Dynamics
, Vol.
663
,
A. D.
Ketsdever
and
E. P.
Muntz
, eds.,
AIP
,
New York
, p.
1008
.
23.
Frezzotti
,
A.
, 1999, “
Monte Carlo Simulation of the Heat Flow in a Dense Hard Sphere Gas
,”
Eur. J. Mech. B/Fluids
0997-7546,
18
, pp.
103
119
.
24.
Halicioğlu
,
T.
, and
Pound
,
G. M.
, 1975, “
Calculation of Potential Energy Parameters From Crystalline State Properties
,”
Phys. Status Solidi A
0031-8965,
30
(
2
), pp.
619
623
.
25.
Guan
,
P.
,
McKenzie
,
D.
, and
Pailthorpe
,
B.
, 1996, “
MD Simulations of Ag Film Growth Using the Lennard-Jones Potential
,”
J. Phys.: Condens. Matter
0953-8984,
8
, pp.
8753
8762
.
You do not currently have access to this content.