This paper presents recent contributions to the development of macroscopic continuum transport equations for micro gas flows and heat transfers. Within the kinetic theory of gases, a combination of the Chapman–Enskog expansion and the Grad moment method yields the regularized 13-moment equations (R13 equations), which are of high approximation order. In addition, a complete set of boundary conditions can be derived from the boundary conditions of the Boltzmann equation. The R13 equations are linearly stable, and their results for moderate Knudsen numbers stand in excellent agreement with direct simulation Monte Carlo (DSMC) method simulations. We give analytical expressions for heat and mass transfer in microchannels. These expressions help to understand the complex interaction of fluid variables in microscale systems. Additionally, we compare interesting analogies such as a mass flux and energy Knudsen paradox. In particular, the R13 model is capable of predicting and explaining the detailed features of Poiseuille microflows.

1.
Cercignani
,
C.
, 1988,
The Boltzmann Equation and Its Applications
,
Applied Mathematical Sciences
Vol.
67
,
Springer
,
New York
.
2.
Struchtrup
,
H.
, 2005,
Macroscopic Transport Equations for Rarefied Gas Flows
,
Interaction of Mechanics and Mathematics
,
Springer
,
New York
.
3.
Bobylev
,
A. V.
, 1982, “
The Chapman-Enskog and Grad Methods for Solving the Boltzmann Equation
,”
Sov. Phys. Dokl.
,
27
, pp.
29
31
. 0038-5689
4.
Bobylev
,
A. V.
, 2006, “
Instabilities in the Chapman-Enskog Expansion and Hyperbolic Burnett Equations
,”
J. Stat. Phys.
0022-4715,
124
(
2–4
), pp.
371
399
.
5.
Jin
,
S.
, and
Slemrod
,
M.
, 2001, “
Regularization of the Burnett Equations Via Relaxation
,”
J. Stat. Phys.
0022-4715,
103
(
5–6
), pp.
1009
1033
.
6.
Agarwal
,
R. K.
,
Yun
,
K. -Y.
, and
Balakrishnan
,
R.
, 2001, “
Beyond Navier–Stokes: Burnett Equations for Flows in the Continuum-Transition Regime
,”
Phys. Fluids
1070-6631,
13
, pp.
3061
3085
.
7.
Agarwal
,
R. K.
,
Yun
,
K. -Y.
, and
Balakrishnan
,
R.
, 2002, “
Erratum: “Beyond Navier–Stokes: Burnett Equations for Flows in the Continuum-Transition Regime” [Phys. Fluids 13, 3061 (2001)]
,”
Phys. Fluids
1070-6631,
14
, p.
1818
.
8.
Lockerby
,
D. A.
, and
Reese
,
J. M.
, 2003, “
High-Resolution Burnett Simulations of Micro Couette Flow and Heat Transfer
,”
J. Comput. Phys.
0021-9991,
188
(
2
), pp.
333
347
.
9.
Grad
,
H.
, 1949, “
On the Kinetic Theory of Rarefied Gases
,”
Commun. Pure Appl. Math.
0010-3640,
2
, pp.
331
407
.
10.
Weiss
,
W.
, 1995, “
Continuous Shock Structure in Extended Thermodynamics
,”
Phys. Rev. E
1063-651X,
52
, pp.
R5760
R5763
.
11.
Müller
,
I.
, and
Ruggeri
,
T.
, 1998,
Rational Extended Thermodynamics
,
Springer Tracts in Natural Philosophy
Vol.
37
,
2nd ed.
,
Springer
,
New York
.
12.
Au
,
J. D.
,
Torrilhon
,
M.
, and
Weiss
,
W.
, 2001, “
The Shock Tube Study in Extended Thermodynamics
,”
Phys. Fluids
1070-6631,
13
(
8
), pp.
2423
2432
.
13.
Levermore
,
C. D.
, 1996, “
Moment Closure Hierarchies for Kinetic Theories
,”
J. Stat. Phys.
0022-4715,
83
(
5–6
), pp.
1021
1065
.
14.
Eu
,
B. -C.
, 1980, “
A Modified Moment Method and Irreversible Thermodynamics
,”
J. Chem. Phys.
0021-9606,
73
(
6
), pp.
2958
2969
.
15.
Myong
,
R. -S.
, 2001, “
A Computational Method for Eu’s Generalized Hydrodynamic Equations of Rarefied and Microscale Gas Dynamics
,”
J. Comput. Phys.
0021-9991,
168
(
1
), pp.
47
72
.
16.
Struchtrup
,
H.
, and
Torrilhon
,
M.
, 2003, “
Regularization of Grad’s 13-Moment-Equations: Derivation and Linear Analysis
,”
Phys. Fluids
1070-6631,
15
(
9
), pp.
2668
2680
.
17.
Torrilhon
,
M.
, and
Struchtrup
,
H.
, 2004, “
Regularized 13-Moment-Equations: Shock Structure Calculations and Comparison to Burnett Models
,”
J. Fluid Mech.
0022-1120,
513
, pp.
171
198
.
18.
Struchtrup
,
H.
, 2004, “
Stable Transport Equations for Rarefied Gases at High Orders in the Knudsen Number
,”
Phys. Fluids
1070-6631,
16
(
11
), pp.
3921
3934
.
19.
Struchtrup
,
H.
, 2005, “
Derivation of 13 Moment Equations for Rarefied Gas Flow to Second Order Accuracy for Arbitrary Interaction Potentials
,”
Multiscale Model. Simul.
1540-3459,
3
(
1
), pp.
221
243
.
20.
Müller
,
I.
,
Reitebuch
,
D.
, and
Weiss
,
W.
, 2003, “
Extended Thermodynamics—Consistent in Order of Magnitude
,”
Continuum Mech. Thermodyn.
0935-1175,
15
(
2
), pp.
113
146
.
21.
Gu
,
X.
, and
Emerson
,
D.
, 2007, “
A Computational Strategy for the Regularized 13 Moment Equations With Enhanced Wall-Boundary Conditions
,”
J. Comput. Phys.
0021-9991,
225
, pp.
263
283
.
22.
Torrilhon
,
M.
, and
Struchtrup
,
H.
, 2008, “
Boundary Conditions for Regularized 13-Moment-Equations for Micro-Channels
,”
J. Comput. Phys.
0021-9991,
227
, pp.
1982
2011
.
23.
Karlin
,
I. V.
,
Gorban
,
A. N.
,
Dukek
,
G.
, and
Nonnenmacher
,
T. F.
, 1998, “
Dynamic Correction to Moment Approximations
,”
Phys. Rev. E
1063-651X,
57
(
2
), pp.
1668
1672
.
24.
Struchtrup
,
H.
, 2006, “
Scaling and Expansion of Moment Equations in Kinetic Theory
,”
J. Stat. Phys.
0022-4715,
125
, pp.
565
587
.
25.
Maxwell
,
J. C.
, 1879, “
On Stresses in Rarefied Gases Arising From Inequalities of Temperature
,”
Philos. Trans. R. Soc. London
0370-2316,
170
, pp.
231
256
.
26.
Struchtrup
,
H.
, 2003, “
Grad’s Moment Equations for Microscale Flows
,”
AIP Conf. Proc.
0094-243X,
663
, pp.
792
799
.
27.
Bird
,
G. A.
, 1998,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
2nd ed.
,
Oxford University Press
,
New York
.
28.
Struchtrup
,
H.
, and
Torrilhon
,
M.
, 2007, “
H-Theorem, Regularization, and Boundary Conditions for Linearized 13 Moment Equations
,”
Phys. Rev. Lett.
0031-9007,
99
, p.
014502
.
29.
Struchtrup
,
H.
, 2005, “
Failures of the Burnett and Super-Burnett Equations in Steady State Processes
,”
Continuum Mech. Thermodyn.
0935-1175,
17
(
1
), pp.
43
50
.
30.
Struchtrup
,
H.
, and
Thatcher
,
T.
, 2007, “
Bulk Equations and Knudsen Layers for the Regularized 13 Moment Equations
,”
Continuum Mech. Thermodyn.
0935-1175,
19
(
3–4
), pp.
177
189
.
31.
Torrilhon
,
M.
, 2006, “
Two-Dimensional Bulk Microflow Simulations Based on Regularized 13-Moment-Equations
,”
Multiscale Model. Simul.
1540-3459,
5
(
3
), pp.
695
728
.
32.
Torrilhon
,
M.
, 2006, “
Regularized 13-Moment-Equations
,”
25th International Symposium on Rarefied Gas Dynamics
, St. Petersburg, Russia.
33.
Knudsen
,
M.
, 1909, “
Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren
,”
Ann. Phys. (Leipzig)
,
333
, pp.
75
130
. 0003-4916
34.
Ohwada
,
T.
,
Sone
,
Y.
, and
Aoki
,
K.
, 1989, “
Numerical Analysis of the Poiseuille and Thermal Transpiration Flows Between Two Parallel Plates on the Basis of the Boltzmann Equation for Hard-Sphere Molecules
,”
Phys. Fluids A
0899-8213,
1
(
12
), pp.
2042
2049
.
35.
Hadjiconstantinou
,
N. G.
, 2003, “
Comment on Cercignani’s Second-Order Slip Coefficient
,”
Phys. Fluids
1070-6631,
15
, pp.
2352
2354
.
36.
Struchtrup
,
H.
, and
Torrilhon
,
M.
, 2008, “
Higher-Order Effects in Rarefied Channel Flows
,”
Phys. Rev. E
1063-651X,
78
, p.
046301
.
37.
Zheng
,
Y.
,
Garcia
,
A. L.
, and
Alder
,
J. B.
, 2002, “
Comparison of Kinetic Theory and Hydrodynamics for Poiseuille Flow
,”
J. Stat. Phys.
0022-4715,
109
, pp.
495
505
.
38.
Xu
,
K.
, and
Li
,
Z. -H.
, 2004, “
Microchannel Flow in the Slip Regime: Gas-Kinetic BGK-Burnett Solutions
,”
J. Fluid Mech.
0022-1120,
513
, pp.
87
110
.
39.
Mizzi
,
S.
,
Gu
,
X. -J.
,
Emerson
,
D. R.
,
Barber
,
R. W.
, and
Reese
,
J.
, 2008, “
Application of a High-Order Macroscopic Approach to Force-Driven Poiseuille Flow in the Slip and Transition Regimes
,”
First International Conference on Micro- and Nano-Heat Transfer
, Tainan, Taiwan, Paper No. MNHT2008-52203.
40.
Taheri
,
P.
,
Torrilhon
,
M.
, and
Struchtrup
,
H.
, 2008, “
Couette and Poiseuille Flows in Micro-Channels: Analytical Solutions for Regularized 13-Moment Equations
,” in press.
You do not currently have access to this content.