A model to predict the steady-state behavior of a rectangular two-phase natural circulation loop has been proposed. The analysis employs a one-dimensional two-fluid model to identify various system parameters, with particular emphasis on the subcooled boiling region. The onset of two-phase region and point of net vapor generation and associated liquid temperatures and vapor qualities have been estimated using a few widely recognized correlations. Predicted results demonstrate that the consideration of subcooled boiling may have significant effect on system behavior, particularly around the transition regions. The interaction of saturated bubbles and subcooled liquid and associated change in heat transfer and frictional forces has been discussed in detail. Fluid stream has been observed to have different combinations of flow stream conditions at boiler exit and condenser inlet. Five probable combinations have been identified and a generalized working-regime map has been proposed on NsubNZu plane. Attempts have been made to identify the influence of various control parameters. A favorable sink condition (higher coolant flow rate or lower coolant entry temperature) has been found to be of particular importance to attain a wider operating range of wall heat flux and better heat transfer characteristics. A design map has been proposed to identify favorable operating condition in terms of control parameters to ensure complete condensation.

1.
Schmidt
,
E.
, 1951,
General Discussion on Heat Transfer
,
Institution of Mechanical Engineers
,
London
, Sec. IV, p.
361
.
2.
Cohen
,
H.
, and
Bayley
,
F. J.
, 1955, “
Heat Transfer Problems of Liquid Cooled Gas Turbine Blades
,”
Proc. Inst. Mech. Eng.
0020-3483,
169
, pp.
1063
1080
.
3.
Mertol
,
A.
,
Place
,
W.
,
Webster
,
T.
, and
Greif
,
R.
, 1981, “
Detailed Loop Model (DLM) Analysis of Liquid Solar Thermosiphons With Heat Exchangers
,”
Sol. Energy
0038-092X,
27
(
5
), pp.
367
386
.
4.
McKee
,
H. R.
, 1970, “
Thermosyphon Reboilers: A Review
,”
Ind. Eng. Chem.
,
62
(
12
), pp.
76
82
. 0019-7866
5.
Sarma
,
N. V. L. A.
,
Reddy
,
P. J.
, and
Murti
,
P. S.
, 1973, “
A Computer Design Method for Vertical Thermosyphon Reboilers
,”
Ind. Eng. Chem. Process Des. Dev.
,
12
(
3
), pp.
278
290
. 0196-4305
6.
Heisler
,
M. P.
, 1982, “
Development of Scaling Requirements for Natural Convection Liquid-Metal Fast Breeder Reactor Shutdown Heat Removal Test Facilities
,”
Nucl. Sci. Eng.
,
80
(
3
), pp.
347
359
. 0029-5639
7.
Hsu
,
Y. Y.
, 1981, “
Two-Phase Flow Problems in Pressurized Water Reactors
,”
Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering
,
J. M.
Delhaye
,
M.
Giot
, and
M. L.
Riethmuller
, eds.,
Hemisphere
,
Washington, DC
, pp.
1
10
.
8.
Kreitlow
,
D. B.
,
Reistad
,
G. M.
,
Miles
,
C. R.
, and
Culver
,
G. G.
, 1978, “
Thermosyphon Models for Downhole Heat Exchanger Applications in Shallow Geothermal Systems
,”
ASME J. Heat Transfer
,
100
, pp.
713
719
. 0022-1481
9.
Lee
,
Y.
, and
Mital
,
U.
, 1972, “
A Two-Phase Closed Thermosyphon
,”
Int. J. Heat Mass Transfer
,
15
(
9
), pp.
1695
1707
. 0017-9310
10.
Dobran
,
F.
, 1985, “
Steady-State Characteristics and Stability Thresholds of a Closed Two-Phase Thermosyphon
,”
Int. J. Heat Mass Transfer
,
28
(
5
), pp.
949
957
. 0017-9310
11.
Ramos
,
E.
,
Sen
,
M.
, and
Trevino
,
C.
, 1985, “
A Steady-State Analysis for Variable Area One- and Two-Phase Thermosyphon Loops
,”
Int. J. Heat Mass Transfer
,
28
(
9
), pp.
1711
1719
. 0017-9310
12.
Chen
,
K. S.
, and
Chang
,
Y. R.
, 1988, “
Steady-State Analysis of Two-Phase Natural Circulation Loop
,”
Int. J. Heat Mass Transfer
,
31
(
5
), pp.
931
940
. 0017-9310
13.
Rao
,
N. M.
,
Chandra Sekhar
,
Ch.
,
Maiti
,
B.
, and
Das
,
P. K.
, 2006, “
Steady-State Performance of a Two-Phase Natural Circulation Loop
,”
Int. Commun. Heat Mass Transfer
0735-1933,
33
, pp.
1042
1052
.
14.
Jeng
,
H. R.
, and
Pan
,
C.
, 1999, “
Analysis of Two-Phase Flow Characteristics in a Natural Circulation Loop Using the Drift-Flux Model Taking Flow Pattern Change and Subcooled Boiling Into Consideration
,”
Ann. Nucl. Energy
,
26
(
14
), pp.
1227
1251
. 0306-4549
15.
Collier
,
J. G.
, and
Thome
,
J. R.
, 1994,
Convective Boiling and Condensation
,
3rd ed.
,
Clarendon
,
Oxford
.
16.
Koncar
,
B.
, and
Mavko
,
B.
, 2003, “
Modelling of Low-Pressure Subcooled Flow Boiling Using the RELAP5 Code
,”
Nucl. Eng. Des.
,
220
, pp.
255
273
. 0029-5493
17.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
, 2005, “
Wall Heat Flux Partitioning During Subcooled Flow Boiling: Part I—Model Development
,”
ASME J. Heat Transfer
0022-1481,
127
(
2
), pp.
131
140
.
18.
Bergles
,
A. E.
, and
Rohsenow
,
W. M.
, 1964, “
The Determination of Forced-Convection Surface Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
86
, pp.
365
372
. 0022-1481
19.
Gnielinski
,
V.
, 1979, “
Equations for Calculating Heat Transfer in Single Tube Rows and Banks of Tubes in Transverse Direction
,”
Int. Chem. Eng.
0020-6318,
19
(
3
), pp.
380
391
.
20.
Saha
,
P.
, and
Zuber
,
N.
, 1974, “
Point of Net Vapour Generation and Vapour Void Fraction in Subcooled Boiling
,”
Proceedings of the Fifth International Heat Transfer Conference
, Tokyo, Paper No. B4.7.
21.
Levy
,
S.
, 1967, “
Forced Convection Subcooled Boiling: Prediction of Vapor Volumetric Fraction
,”
Int. J. Heat Mass Transfer
0017-9310,
10
(
7
), pp.
951
965
.
22.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
, 1970, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
0017-9310,
13
(
2
), pp.
383
393
.
23.
Dobson
,
M. K.
, and
Chato
,
J. C.
, 1998, “
Condensation in Smooth Horizontal Tubes
,”
ASME J. Heat Transfer
0022-1481,
120
(
1
), pp.
193
213
.
24.
Petukhov
,
B. S.
, and
Roizen
,
L. I.
, 1964, “
Generalized Relationships for Heat Transfer in Turbulent Flow of Gas in Tubes of Annular Section
,”
High Temp.
,
2
, pp.
65
68
. 0018-151X
25.
Chisholm
,
D.
, 1973, “
Pressure Gradients Due to Friction During the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
16
(
2
), pp.
347
358
.
26.
Friedel
,
L.
, 1979, “
Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow
,”
Proceedings of the European Two-Phase Flow Group Meeting
, Ispra, Paper No. E2.
27.
Wagner
,
W.
,
Copper
,
J. R.
,
Dittmann
,
A.
,
Kijima
,
J.
,
Kretzschmar
,
H. J.
,
Kruse
,
A.
,
Mares
,
R.
,
Oguchi
,
K.
,
Sato
,
H.
,
Stocker
,
I.
,
Sifner
,
O.
,
Takaishi
,
Y.
,
Tanishita
,
I.
,
Trubenbach
,
J.
, and
Willkommen
,
Th.
, 2000, “
The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
150
182
.
28.
De Kruijf
,
W. J. M.
,
Sengstag
,
T.
,
De Haas
,
D. W.
, and
Van Der Hagen
,
T. H. J. J.
, 2004, “
Experimental Thermohydraulic Stability Map of a Freon-12 Boiling Water Reactor Facility With High Exit Friction
,”
Nucl. Eng. Des.
,
229
, pp.
75
80
. 0029-5493
29.
Zeitoun
,
O.
, and
Shoukri
,
M.
, 1997, “
Axial Void Fraction Profile in Low Pressure Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
869
879
. 0017-9310
You do not currently have access to this content.