This study deals with resistance spot welding process modeling. Particular attention must be paid to the interfacial conditions, which strongly influence the nugget growth. Imperfect contact conditions are usually used in the macroscopic model to account for the electrical and thermal volume phenomena, which occur near a metallic interface crossed by an electric current. One approach consists in representing microconstriction phenomena by surface contact parameters: The share coefficient and the thermal and electrical contact resistances, which depend on the contact temperature. The aim of this work is to determine the share coefficient and the contact temperature through a numerical model on a microscopic scale. This surface approach does not make it possible to correctly represent the temperature profiles, with the peak temperature, observed in the immediate vicinity of the interface and thus to define, in practice, the contact temperature correctly. That is why another approach is proposed with the introduction of a low thickness layer (third body) at the level of the interface the electric and thermal resistances of which are equivalent to the electrical and thermal contact resistance values. In this case, the parameters of the model are reduced to the thickness of the arbitrarily fixed layer and equivalent electric and thermal conductivities in the thin layer, the partition coefficient and the contact temperature becoming implicit. The two types of thermoelectric contact models are tested within the framework of the numerical simulation of a spot welding test. The nugget growth development is found to be much different with each model.

1.
Khan
,
J. A.
,
Xu
,
L.
,
Chao
,
Y.-J.
, and
Broach
,
K.
, 2000, “
Numerical Simulation of Resistance Spot Welding Process
,”
Numer. Heat Transfer, Part A
1040-7782,
37
, pp.
425
446
.
2.
De
,
A.
,
Thaddeus
,
M. P.
, and
Dorn
,
L.
, 2003, “
Numerical Modelling of Resistance Spot Welding of Aluminium Alloy
,”
ISIJ Int.
0915-1559,
43
, pp.
238
244
.
3.
Wang
,
S. C.
, and
Wei
,
P. S.
, 2001, “
Modeling Dynamic Electrical Resistance During Resistance Spot Welding
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
576
585
.
4.
Huh
,
H.
, and
Kang
,
W. J.
, 1997, “
Electrothermal Analysis of Electric Resistance Spot Welding Process by a 3-D Finite Element Method
,”
J. Mater. Process. Technol.
0924-0136,
63
, pp.
672
677
.
5.
Sun
,
X.
, and
Dong
,
P.
, 2000, “
Analysis of Aluminium Resistance Spot Welding Processes Using Coupled Finite Element Procedures
,”
Weld. Res. (Miami, FL, U. S.)
0096-7629,
79
, pp
215.s
221.s
.
6.
Feulvarch
,
E.
,
Robin
,
V.
, and
Bergheau
,
J. M.
, 2004, “
Resistance Spot Welding Simulation—A General Finite Element Formulation of Electrothermal Contact Conditions
,”
J. Mater. Process. Technol.
,
153–154
, pp.
436
441
. 0924-0136
7.
Feulvarch
,
E.
,
Rogeon
,
P.
,
Carre
,
P.
,
Robin
,
V.
,
Sibilia
,
G.
, and
Bergheau
,
J. M.
, 2006, “
Resistance Spot Welding Process: Experimental and Numerical Modelling of the Weld Growth Mechanisms With Care to Contact Conditions
,”
Numer. Heat Transfer, Part A
,
49
, pp.
345
367
. 1040-7782
8.
Feng
,
Z.
,
Babu
,
S. S.
,
Santella
,
M. L.
,
Riemer
,
B. W.
, and
Gould
,
J. E.
, 1998, “
An Incrementally Coupled Electrical-Thermal-Mechanical Model for Resistance Spot Welding
,”
Proceedings of the Fifth International Conference on Trends in Welding Research
,
Pine Mountain
, June 1–5.
9.
Le Meur
,
G.
,
Bourouga
,
B.
, and
Bardon
,
J. P.
, 2006, “
Microscopic Analysis of Interfacial Electrothermal Phenomena Definition of a Heat Generation Factor
,”
Int. J. Heat Mass Transfer
,
49
, pp.
387
401
. 0017-9310
10.
Le Meur
,
G.
,
Bourouga
,
B.
, and
Dupuy
,
T.
, 2003, “
Measurement of Contact Parameters at Electrode/Sheet Interface During Resistance Spot Welding Process
,”
Sci. Technol. Weld. Joining
1362-1718,
8
(
6
), pp.
415
422
.
11.
Wei
,
P. S.
, and
Yeh
,
F. B.
, 1991, “
Factors Affecting Nugget Growth With Mushy-Zone Phase Change During Resistance Spot Welding
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
643
649
.
12.
Wei
,
P. S.
,
Wang
,
S. C.
, and
Lin
,
M. S.
, 1996, “
Transport Phenomena During Resistance Spot Welding
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
762
773
.
13.
Le Meur
,
G.
, 2002, “
Etude de la condition de liaison thermique à une interface de contact solide—solide siège d’une dissipation par effet Joule: Application au soudage par point
,” Ph.D. thesis, Ecole Polytechnique, University of Nantes, Nantes.
14.
Timsit
,
R. S.
, 2001, “
The Temperature of an Electrically Heated Contact Spot
,” The Connector TekNote, May.
15.
Bahrami
,
M.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2004, “
Modeling Thermal Contact Resistance: A Scale Analysis Approach
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
896
905
.
16.
James
,
P. S.
,
Chandler
,
H. W.
,
Evans
,
J. T.
,
Wen
,
J.
,
Browne
,
D. J.
, and
Newton
,
C. J.
, 1997, “
The Effect of Mechanical Loading on the Contact Resistance of Coated Aluminium
,”
Mater. Sci. Eng., A
0921-5093,
230
, pp.
194
201
.
17.
Jackson
,
R. L.
,
Bhavnani
,
S. H.
, and
Ferguson
,
T. P.
, 2008, “
A Multiscale Model of Thermal Contact Resistance Between Rough Surface
,”
ASME J. Heat Transfer
0022-1481,
130
(
8
), p.
081301
.
18.
Marotta
,
E. E.
,
Fletcher
,
L. S.
, and
Dietz
,
T. A.
, 2001, “
Thermal Contact Resistance Modeling of Non-Flat, Roughened Surfaces With Non-Metallic Coatings
,”
ASME J. Heat Transfer
0022-1481,
123
(
1
), pp.
11
23
.
19.
Vogler
,
M.
, and
Sheppard
,
S.
, 1993, “
Electrical Contact Resistance Under High Loads and Elevated Temperatures
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
72
(
6
), pp.
231
298
.
20.
Thornton
,
P. H.
,
Krause
,
A. R.
, and
Davies
,
R. G.
, 1996, “
Contact Resistances in Spot Welding
,”
Weld. Res. (Miami, FL, U. S.)
,
75
(
12
), pp.
402s
412s
. 0002-7820
21.
Rogeon
,
P.
,
Carre
,
P.
,
Costa
,
J.
,
Sibilia
,
G.
, and
Saindrenan
,
G.
, 2008, “
Characterization of Electrical Contact Conditions in Spot Welding Assemblies
,”
J. Mater. Process. Technol.
0924-0136,
195
(
1–3
), pp
117
124
.
22.
Bardon
,
J. P.
, 1994, “
Bases Physiques des conditions de contact thermique imparfait entre deux milieux en glissement relatif
,”
Rev. Gen. Therm.
0035-3159,
386
, pp.
85
91
.
23.
Chantrenne
,
P.
, and
Raynaud
,
M.
, 1997, “
A Microscopic Thermal Model for Dry Sliding Contact
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
5
), pp.
1083
1094
.
24.
Laraqi
,
N.
, 1997, “
Velocity and Relative Contact Size Effects on Thermal Constriction Resistance in Sliding Solids
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
173
175
.
25.
Bouvier
,
A.
, 1986, “
Mesure des températures par des méthodes thermoélectriques intrinsèques et semi-intrinsèques. Application à l’analyse thermique d’une opération de micro-soudure
,” Ph.D. thesis, Ecole Polytechnique University Nantes, Nantes.
26.
E34.03.180.G, Norme PSA Peugeot Citroën, 2001, “
Soudage électrique par résistance: Techniques de Soudage—Spécifications générales
,” Mars.
You do not currently have access to this content.