An inverse forced convection problem was studied in this paper. The unknown space-dependent heat flux at the outer boundary of a circular pipe was identified from the temperature measurements within the flow using the algorithm based on an improved conjugate gradient method, which is a combination of the modified inverse algorithm proposed by Ozisik et al. (Huang and Ozisik, 1992, “Inverse Problem of Determining Unknown Wall Heat Flux in Laminar Flow Through a Parallel Plate Duct,” Numer. Heat Transfer, Part A 21, pp. 2615–2618) and the general inverse algorithm based on the conjugate gradient method. The effects of the convection intensity, the number of thermocouples, the location of the thermocouples, and the measurement error on the performance of the modified inverse algorithm method and the improved inverse algorithm were studied thoroughly through three examples. It is shown that the improved inverse algorithm can greatly improve the solution accuracy in the entire computation domain. The accuracy and stability of both the modified inverse algorithm method and the improved inverse algorithm are strongly influenced by the Reynolds number and the shape of the unknown heat flux. Those functions, which contain more high-frequency components of Fourier series, are more sensitive to the increase in the Reynolds number.

1.
Hadamard
,
J.
, 1923,
Lecture on Cauchy’s Problem in Linear Partial Differential Equations
,
Yale University Press
,
New Haven, CT
.
2.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St-Clair
,
C. R.
, Jr.
, 1985,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley Interscience
,
New York
.
3.
Alifanov
,
O. M.
, 1994,
Inverse Heat Transfer Problems
,
Springer-Verlag
,
Berlin
.
4.
Huang
,
C. H.
, and
Tsai
,
C. C.
, 1998, “
An Inverse Heat Conduction Problem of Estimating Boundary Fluxes in an Irregular Domain With Conjugate Gradient Method
,”
Heat Mass Transfer
0947-7411,
34
, pp.
47
54
.
5.
Su
,
J.
, and
Hewitt
,
F.
, 2004, “
Inverse Heat Conduction Problem of Estimating Time-Varying Heat Transfer Coefficient
,”
Numer. Heat Transfer, Part A
1040-7782,
45
, pp.
777
789
.
6.
Loulou
,
T.
, and
Scott
,
E. P.
, 2006, “
An Inverse Heat Conduction Problem With Heat Flux Measurements
,”
Int. J. Numer. Methods Eng.
0029-5981,
67
, pp.
1587
1616
.
7.
Huang
,
C. H.
, and
Tsai
,
Y. L.
, 2005, “
A Transient 3-D Inverse Problem in Imaging the Time-Dependent Local Heat Transfer Coefficients for Plate Fin
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
2478
2495
.
8.
Deng
,
H.
,
Guessasma
,
S.
,
Montavon
,
G.
,
Linao
,
H.
,
Coddet
,
C.
,
Benkrid
,
D.
, and
Abouddi
,
S.
, 2005, “
Combination of Inverse and Neural Network Methods to Estimate Heat Flux
,”
Numer. Heat Transfer, Part A
1040-7782,
47
, pp.
593
607
.
9.
Girault
,
M.
, and
Petit
,
D.
, 2005, “
Identification Methods in Nonlinear Heat Conduction. Part II: Inverse Problem Using a Reduced Model
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
119
133
.
10.
Huang
,
C. H.
, and
Ozisik
,
M. N.
, 1992, “
Inverse Problem of Determining Unknown Wall Heat Flux in Laminar Flow Through a Parallel Pale Duct
,”
Numer. Heat Transfer, Part A
1040-7782,
21
, pp.
2615
2618
.
11.
Bokar
,
J. C.
, and
Ozisik
,
M. N.
, 1995, “
An Inverse Analysis for Estimating the Time-Varying Inlet Temperature in Laminar Flow Inside a Parallel Plate Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
39
45
.
12.
Colaco
,
M. J.
, and
Orlande
,
H. R. B.
, 2001, “
Inverse Forced Convection Problem of Simultaneous Estimation of Two Boundary Heat Flux in Irregularly Shaped Channels
,”
Numer. Heat Transfer, Part A
1040-7782,
39
, pp.
737
760
.
13.
Su
,
J.
, and
Neto
,
A. J. S.
, 2001, “
Simultaneous Estimation of Inlet Temperature and Wall Heat Flux in Turbulent Circular Pipe Flow
,”
Numer. Heat Transfer, Part A
1040-7782,
40
, pp.
751
766
.
14.
Li
,
H. Y.
, and
Yan
,
W. M.
, 2003, “
Identification of Wall Heat Flux for Turbulent Forced Convection by Inverse Analysis
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1041
1048
.
15.
Chen
,
C. K.
,
Wu
,
L. W.
, and
Yang
,
Y. T.
, 2006, “
Estimation of Time-Varying Inlet Temperature and Heat Flux in Turbulent Circular Pipe Flow
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
44
52
.
16.
Park
,
H. M.
, and
Lee
,
J. H.
, 1998, “
A Method of Solving Inverse Convection Problems by Means of Mode Reduction
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
1731
1744
.
17.
Park
,
H. M.
,
Chung
,
O. Y.
, and
Lee
,
J. H.
, 1999, “
On the Solution of Inverse Heat Transfer Problems Using the Karhunen-Leve Galerkin Method
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
127
142
.
18.
Park
,
H. M.
, and
Chung
,
O. Y.
, 1999, “
An Inverse Natural Convection Problem of Estimating the Strength of a Heat Source
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
4259
4273
.
19.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
20.
Tao
,
W. Q.
, 2001,
Numerical Heat Transfer
,
2nd ed.
,
Xi’an Jiaotong University
,
Xi’an
.
21.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Forced Convection in Ducts
,
Academic
,
New York
.
22.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
, 2005,
Convective Heat and Mass Transfer
,
4th ed.
,
McGraw-Hill
,
Boston
.
23.
Fletcher
,
R.
, and
Reeves
,
C. M.
, 1964, “
Function Minimization by Conjugate Gradient Method
,”
Comput. J.
0010-4620,
7
, pp.
149
154
.
24.
Jarny
,
Y.
,
Ozisik
,
M. N.
, and
Bardon
,
J. P.
, 1991, “
A General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction
,”
Int. J. Heat Mass Transfer
0017-9310,
11
, pp.
2911
2919
.
25.
Prud’homme
,
M.
, and
Hung Nguyen
,
T.
, 1999, “
Fourier Analysis of Conjugate Gradient Method Applied to Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
4447
4460
.
You do not currently have access to this content.