A two-dimensional inverse heat conduction problem to determine the interfacial configuration of a multiple region domain is solved by utilizing temperature readings on the outer surface of the whole domain. The method used is the modified one-dimensional correction method (MODCM) along with the finite element method. The MODCM is a simple but very accurate method, which first solves the multidimensional inverse heat conduction problem based on the simplified one-dimensional model, and the discrepancy in the result caused by this one-dimensional simplification is corrected afterward by an iterative process. A series of numerical experiments is conducted in order to verify the effectiveness of the algorithm. The method can identify the interfacial configuration of the multiple region domain with high accuracy. The average relative error of the identification result is not more than 10.4% when the standard deviation of the temperature measurement is less than 2.0% of the average measured temperature for the cases tested. The number of the measurement points of the inspection surface can be reduced with no obvious effect on the estimation results as long as it is still sufficient to describe the exact interfacial configuration. The method is proved to be a simple, fast, and accurate one that can solve successfully this interfacial configuration identification problem.

1.
Hsieh
,
C. K.
, and
Su
,
K. U.
, 1980, “
A Methodology of Predicting Cavity Geometry Based on Scanned Surface Temperature Data-Prescribed Surface Temperature at the Cavity Side
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
324
329
.
2.
Hsieh
,
C. K.
, and
Su
,
K. U.
, 1981, “
A Methodology of Predicting Cavity Geometry Based on the Scanned Surface Temperature Data-Prescribed Heat Flux at the Cavity Side
,”
ASME J. Heat Transfer
0022-1481 ,
103
, pp.
42
46
.
3.
Cheng
,
C. H.
,
Lin
,
H. H.
, and
Aung
,
W.
, 2003, “
Optimal Shape Design for Packaging Containing Heating Elements by Inverse Heat Transfer Method
,”
Heat Mass Transfer
0947-7411,
39
, pp.
687
692
.
4.
Cheng
,
C. H.
, and
Chang
,
M. H.
, 2003, “
Shape Design for a Cylinder With Uniform Temperature Distribution on the Outer Surface by Inverse Heat Transfer Method
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
101
111
.
5.
Huang
,
C. H.
, and
Shih
,
C. C.
, 2005, “
Identify the Interfacial Configurations in a Multiple Region Domain Problem
,”
J. Thermophys. Heat Transfer
0887-8722,
19
, pp.
533
541
.
6.
Huang
,
C. H.
, and
Chao
,
B. H.
, 1997, “
An Inverse Geometry Problem in Identifying Irregular Boundary Configurations
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2045
2053
.
7.
Huang
,
C. H.
, and
Tsai
,
C. C.
, 1998, “
A Transient Inverse Two-Dimensional Geometry Problem in Estimating Time-Dependent Irregular Boundary Configurations
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
1707
1718
.
8.
Huang
,
C. H.
,
Chiang
,
C. C.
, and
Chen
,
H. M.
, 1998, “
Shape Identification Problem in Estimating Geometry of Multiple Cavities
,”
J. Thermophys. Heat Transfer
0887-8722,
12
, pp.
270
277
.
9.
Fan
,
C. L.
,
Sun
,
F. R.
, and
Yang
,
L.
, 2005, “
A General Quantitative Identification Algorithm of Subsurface Defect for Infrared Thermography
,”
Proceedings of the Joint 30th International Conference on Infrared Millimeter Waves and 13th International Conference on Terahertz Electronics
, Williamsburg, VA, Vol.
2
, pp.
341
342
.
10.
Fan
,
C. L.
,
Sun
,
F. R.
,
Yang
,
L.
, and
Liu
,
B. H.
, 2006, “
Study on a New Quantitative Thermographic Evaluation Method of Three-Dimensional Subsurface Defect for Electric Apparatus
,”
Proc. Chin. Soc. Electr. Eng.
0258-8013,
26
, pp.
159
164
.
11.
Fan
,
C. L.
,
Sun
,
F. R.
, and
Yang
,
L.
, 2007, “
An Algorithm Study on the Identification of Pipe’s Irregular Inner Boundary Based on Thermographic Temperature Measurement
,”
Meas. Sci. Technol.
,
18
, pp.
2170
2177
. 0957-0233
12.
Fan
,
C. L.
,
Sun
,
F. R.
, and
Yang
,
L.
, 2007, “
An Algorithm Study on Identification of the Subsurface Defect for Infrared Thermography
,”
J. Eng. Thermophys.
,
28
, pp.
304
306
.
13.
Su
,
C. R.
, and
Chen
,
C. K.
, 2007, “
Geometry Estimation of the Furnace Inner Wall by an Inverse Approach
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
3767
3773
.
14.
Yang
,
L.
,
Geng
,
W.
,
Jiang
,
L.
,
Zou
,
L.
, and
Hong
,
J.
, 1999, “
Profile Identification in Dynamic Infrared Thermography: Adaptability and Stability
,”
Int. J. Infrared Millim. Waves
,
20
, pp.
623
634
. 0195-9271
15.
Fan
,
C. L.
,
Sun
,
F. R.
, and
Yang
,
L.
, 2007, “
A Modified One-Dimensional Correction Method for Multidimensional Thermographic Inner Pipe Boundary Identification
,”
Int. J. Heat Mass Transfer
, submitted.
16.
Huang
,
C. H.
, and
Chen
,
H. M.
, 1999, “
An Inverse Geometry Problem of Identifying Growth of Boundary Shapes in Multiple Region Domain
,”
Numer. Heat Transfer, Part A
1040-7782,
35
, pp.
435
450
.
17.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
, 2000,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor & Francis
,
New York
.
18.
Alifanov
,
O. M.
, 1994,
Inverse Heat Transfer Problems
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.