In this work a statistical model is developed by deriving the probability density function (pdf) of bubble coalescence on boiling surface to describe the distribution of vapor bubble radius. Combining this bubble coalescence model with other existing models in the literature that describe the dynamics of bubble motion and the mechanisms of heat transfer, the surface heat flux in subcooled nucleate boiling can be calculated. By decomposing the surface heat flux into various components due to different heat transfer mechanisms, including forced convection, transient conduction, and evaporation, the effect of the bubble motion is identified and quantified. Predictions of the surface heat flux are validated with R134a data measured in boiling experiments and water data available in the literature, with an overall good agreement observed. Results indicate that there exists a limit of surface heat flux due to the increased bubble coalescence and the reduced vapor bubble lift-off radius as the wall temperature increased. Further investigation confirms the consistency between this limit value and the experimentally measured critical heat flux (CHF), suggesting that a unified mechanistic modeling to predict both the surface heat flux and CHF is possible. In view of the success of this statistical modeling, the authors tend to propose the utilization of probabilistic formulation and stochastic analysis in future modeling attempts on subcooled nucleate boiling.

1.
Collier
,
J.
, and
Thome
,
J.
, 1994,
Convective Boiling and Condensation
, 3rd ed.,
Oxford University Press
,
New York
.
2.
Jens
,
W. H.
, and
Lottes
,
P. A.
, 1951, “
Analysis of Heat Transfer Burnout, Pressure Drop and Density Data for High Pressure Water
,” Report No. ANL-4627.
3.
Thom
,
J. R. S.
,
Walker
,
W. M.
,
Fallon
,
T. A.
, and
Reising
,
G. F. S.
, 1965, “
Boiling in Subcooled Water During Flow Up Heated Tubes or Annuli
,”
Proceedings of the Symposium on Boiling Heat Transfer in Steam Generating Units and Heat Exchangers
, Vol.
180
, pp.
226
246
.
4.
Bowring
,
R. W.
, 1962, “
Physical Model Based on Bubble Detachment and Calculation of Steam Voidage in the Subcooled Region of a Heated Channel
,” Institute for Atomenergi, Halden, Norway, Report No. HPR-10.
5.
Rouhani
,
S. Z.
, and
Axelsson
,
E.
, 1970, “
Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions
,”
Int. J. Heat Mass Transfer
0017-9310,
13
, pp.
383
393
.
6.
Dix
,
G. E.
, 1971, “
Vapor Void Fraction for Forced Convection With Subcooled Boiling at Low Flow Rates
,” Ph.D. thesis, University of California, Berkeley, Berkeley.
7.
Larsen
,
P. S.
, and
Tong
,
L. S.
, 1969, “
Void Fractions in Subcooled Flow Boiling
,”
ASME J. Heat Transfer
0022-1481,
91
, pp.
471
476
.
8.
Maroti
,
L.
, 1977, “
Axial Distribution of Void Fraction in Subcooled Boiling
,”
Nucl. Technol.
0029-5450,
34
, pp.
8
17
.
9.
Chatoorgoon
,
V.
,
Dimmick
,
G. R.
,
Carver
,
M. B.
,
Selander
,
W. N.
, and
Shoukri
,
M.
, 1992, “
Application of Generation and Condensation Models to Predict Subcooled Boiling Void at Low Pressures
,”
Nucl. Technol.
0029-5450,
98
, pp.
366
378
.
10.
Sateesh
,
G.
,
Sarit
,
K. D.
, and
Balakrishnan
,
A. R.
, 2005, “
Analysis of Pool Boiling Heat Transfer: Effect of Bubbles Sliding on the Heating Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1543
1553
.
11.
Wang
,
C. H.
, and
Dhir
,
V. K.
, 1993, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
659
669
.
12.
Barthau
,
G.
, and
Hahne
,
E.
, 2000, “
Nucleation Site Density and Heat Transfer in Nucleate Pool Boiling of Refrigerant R134a in a Wide Pressure Range
,”
Proceedings of the Third European Thermal Sciences Conference
, Vol.
2
, pp.
731
736
.
13.
Luke
,
A.
, and
Gorenflo
,
D.
, 2000, “
Heat Transfer and Size Distribution of Active Nucleation Sites in Boiling Propane Outside a Tube
,”
Int. J. Therm. Sci.
1290-0729,
39
, pp.
919
930
.
14.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
, 2005, “
Wall Heat Flux Partitioning During Subcooled Flow Boiling: Part I—Model Development
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
131
140
.
15.
Morozov
,
V. G.
, 1969,
Convective Heat Transfer in Two Phase Flow
,
V. M.
Borishannskii
and
I. I.
Paleev
, eds.,
Israel Program for Scientific Transactions
.
16.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
, 1930, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Publications in Engineering
, Vol.
2
,
University of California, Berkeley
,
Berkeley
, p.
443
.
17.
Tan
,
H. M.
, and
Charters
,
W. W. S.
, 1970, “
An Experimental Investigation of Forced-Convective Heat Transfer for Fully-Developed Turbulent Flow in a Rectangular Duct With Asymmetric Heating
,”
Sol. Energy
0038-092X,
13
, pp.
121
125
.
18.
Tan
,
H. M.
, and
Charters
,
W. W. S.
, 1969, “
Effect of Thermal Entrance Region on Turbulent Forced-Convective Heat Transfer for an Asymmetrically Heated Rectangular Duct With Uniform Heat Flux
,”
Sol. Energy
0038-092X,
12
, pp.
513
516
.
19.
Brennen
,
C. E.
, 1982, “
A Review of Added Mass and Fluid Inertial Forces
,” Naval Civil Engineering Laboratory, Port Hueneme, CA, Report No. CR82.010.
20.
Judd
,
R. L.
, and
Hwang
,
K. S.
, 1976, “
A Comprehensive Model for Nucleate Boiling Heat Transfer Including Microlayer Evaporation
,”
ASME J. Heat Transfer
0022-1481,
98
, pp.
623
629
.
21.
Todreas
,
N. E.
, and
Kazimi
,
N. S.
, 1989,
Nuclear Systems I, Thermal Hydraulic Fundamentals
,
MIT
,
Cambridge, MA
.
22.
Levy
,
S.
, 1967, “
Forced Convection Subcooled Boiling—Prediction of Vapor Volumetric Fraction
,”
Int. J. Heat Mass Transfer
0017-9310,
10
, pp.
951
965
.
23.
Mikic
,
B. B.
,
Rohsenow
,
W. M.
, and
Griffith
,
P.
, 1970, “
On Bubble Growth Rates
,”
Int. J. Heat Mass Transfer
0017-9310,
13
, pp.
657
666
.
24.
Lien
,
Y.
, 1969, “
Bubble Growth Rates at Reduced Pressure
,” Sc.D. thesis, MIT, Cambridge, MA.
25.
Zuber
,
N.
, 1961, “
The Dynamics of Vapor Bubbles in Nonuniform Temperature Fields
,”
Int. J. Heat Mass Transfer
0017-9310,
2
, pp.
83
98
.
26.
Thorncroft
,
G. E.
,
Klausner
,
J. F.
, and
Mei
,
R.
, 2001, “
Bubble Forces and Detachment Models
,”
Multiphase Sci. Technol.
0276-1459,
13
(
3–4
), pp.
35
76
.
You do not currently have access to this content.