Flow boiling was experimentally studied using coolant HFE-7000 for two types of parallel microchannels: a plain-wall microchannel and a microchannel with structured reentrant cavities on the side walls. Flow morphologies, boiling inceptions, heat transfer coefficients, and critical heat fluxes were obtained and studied for mass fluxes ranging from G=164kg/m2s to G=3025kg/m2s and mass qualities (energy definition) ranging from x=0.25 to x=1. Comparisons of the performance of the enhanced and plain-wall microchannels were carried out. It was found that reentrant cavities were effective in reducing the superheat at the onset of nucleate boiling and increasing the heat transfer coefficient. However, they did not seem to increase the critical heat flux.

1.
Thome
,
J. R.
, 1990,
Enhanced Boiling Heat Transfer
,
Hemisphere
,
Washington, DC
.
2.
Zeng
,
L. Z.
, and
Klausner
,
J. F.
, 1993, “
Nucleation Site Density in Forced Convection Boiling
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
215
221
.
3.
Del Valle
,
V. H. M.
, and
Kenning
,
D. B. R.
, 1985, “
Subcooled Flow Boiling at High Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
1907
1920
.
4.
Kandlikar
,
S. G.
, 1990, “
A General Correlation for Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
219
228
.
5.
Kandlikar
,
S. G.
, 1991, “
Development of a Flow Boiling Map for Subcooled and Saturated Flow Boiling of Different Fluids Inside Circular Tubes
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
190
200
.
6.
Liu
,
Z.
, and
Winterton
,
R. H. S.
, 1991, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool Boiling Equation
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
2759
2766
.
7.
Warrier
,
G. R.
, and
Dhir
,
V. K.
, 2006, “
Heat Transfer and Wall Heat Flux Partitioning During Subcooled Flow Nucleate Boiling—A Review
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
1243
1256
.
8.
Kandlikar
,
S. G.
, 2007, “
Discussion: Heat Transfer and Wall Heat Flux Partitioning During Subcooled Flow Nucleate Boiling—A Review
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1300
1301
.
9.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 2001, “
Forced Convection Boiling in Microchannel Heat Sink
,”
J. Microelectromech. Syst.
1057-7157,
10
(
1
), pp.
80
87
.
10.
Zhang
,
L.
,
Koo
,
J.
,
Jiang
,
L.
,
Asheghi
,
M.
,
Goodson
,
K. E.
, and
Santiago
,
J. G.
, 2002, “
Measurements and Modeling of Two-Phase Flow in Microchannels With Nearly Constant Heat Flux Boundary Conditions
,”
J. Microelectromech. Syst.
1057-7157,
11
(
1
), pp.
12
19
.
11.
Kandlikar
,
S. G.
, 2002, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
389
407
.
12.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2755
2771
.
13.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—II. Annular Two-Phase Flow Model
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2773
2784
.
14.
Koşar
,
A.
,
Kuo
,
C. -J.
, and
Peles
,
Y.
, 2005, “
Boiling Heat Transfer in Rectangular Microchannels With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
23–24
), pp.
4867
4886
.
15.
Kuo
,
C. -J.
, and
Peles
,
Y.
, 2007, “
Local Measurement of Flow Boiling in Structured Surface Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
23–24
), pp.
4513
4526
.
16.
Roday
,
A. P.
,
Borca-Tasciuc
,
T.
, and
Jensen
,
M. K.
, 2008, “
The Critical Heat Flux Condition With Water in a Uniformly Heated Microtube
,”
ASME J. Heat Transfer
0022-1481,
130
, pp.
012901
.
17.
Roser
,
R.
,
Thonon
,
B.
, and
Mercier
,
P.
, 1999, “
Experimental Investigations on Boiling of N-Pentane Across a Horizontal Tube Bundle: Two-Phase Flow and Heat Transfer Characteristics
,”
Int. J. Refrig.
0140-7007,
22
, pp.
536
547
.
18.
Chang
,
J. Y.
, and
You
,
S. M.
, 1997, “
Boiling Heat Transfer Phenomena From Micro-Porous Surfaces in Saturated FC-72
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
18
), pp.
4437
4447
.
19.
Zhang
,
L.
,
Wang
,
E. N.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
, 2005, “
Phase Change Phenomena in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
8
), pp.
1572
1582
.
20.
Koşar
,
A.
,
Kuo
,
C. -J.
, and
Peles
,
Y.
, 2005, “
Reduced Pressure Boiling Heat Transfer in Rectangular Microchannels With Interconnected Reentrant Cavities
,”
ASME J. Heat Transfer
0022-1481,
127
(
10
), pp.
1106
1114
.
21.
Kuo
,
C. -J.
,
Koşar
,
A.
,
Peles
,
Y.
,
Virost
,
S.
,
Mishra
,
C.
, and
Jensen
,
M. K.
, 2005, “
Bubble Dynamics During Boiling in Enhanced Surface Microchannels
,”
J. Microelectromech. Syst.
1057-7157,
15
(
6
), pp.
1514
1527
.
22.
Pate
,
D. T.
,
Jones
,
R. J.
, and
Bhavnani
,
S. H.
, 2006, “
Cavity-Induced Two-Phase Heat Transfer in Silicon Microchannels
,”
Thermomechanical Phenomena in Electronic Systems
,
Proceedings of the 10th Intersociety Conference on Thermal and Thermomechanical Phenomena and Emerging Technologies in Electronic Systems (ITherm 2006)
, pp.
71
78
.
23.
Jones
,
R. J.
,
Pate
,
D. T.
, and
Bhavnani
,
S. H.
, 2007, “
Control of Instabilities in Two-Phase Microchannel Flow Using Artificial Nucleation Sites
,”
Proceedings of the ASME InterPack Conference (IPack 2007)
, pp.
247
358
.
24.
Naveenan
,
T.
,
Jones
,
R. J.
,
Pate
,
D. T.
, and
Bhavnani
,
S. H.
, 2008, “
Thermal Characteristics of Two-Phase Flow of a Dielectric Fluid of Surface-Augmented Microchannels
,”
11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System (ITherm 2008)
, pp.
189
196
.
25.
Kuo
,
C. -J.
, and
Peles
,
Y.
, 2008, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
0022-1481,
130
(
7
), p.
072402
.
26.
Kuo
,
C. -J.
, and
Peles
,
Y.
, 2009, “
Pressure Effect on Flow Boiling Instabilities in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
1-2
), pp.
271
280
.
27.
Yin
,
C. -P.
,
Yan
,
Y. -Y.
,
Lin
,
T. -F.
, and
Yang
,
B. -C.
, 2000, “
Subcooled Flow Boiling Heat Transfer of R-134a and Bubble Characteristics in a Horizontal Annular Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
11
), pp.
1885
1896
.
28.
Lie
,
Y. M.
, and
Lin
,
T. F.
, 2006, “
Subcooled Flow Boiling Heat Transfer and Associated Bubble Characteristics of R-134a in a Narrow Annular Duct
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
13–14
), pp.
2077
2089
.
29.
Martin-Callizo
,
C.
,
Palm
,
B.
, and
Owhaib
,
W.
, 2007, “
Subcooled Flow Boiling of R-134-a in Vertical Channels of Small Diameter
,”
Int. J. Multiphase Flow
0301-9322,
33
, pp.
822
832
.
30.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2008, “
Refrigerant Flow Boiling Heat Transfer in Parallel Microchannels as a Function of Local Vapor Quality
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4775
4787
.
31.
Revellin
,
R.
,
Agostini
,
B.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
, 2008, “
Experimental Investigation of Velocity and Length of Elongated Bubbles for Flow of R-134a in a 0.5 MM Microchannel
,”
Exp. Therm. Fluid Sci.
0894-1777,
32
, pp.
870
881
.
32.
Kline
,
S.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
(
1
), pp.
3
8
.
33.
Kuo
,
C. -J.
, 2009, “
Flow Boiling in Structured Surface Microchannels
,” Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY.
34.
Collier
,
J. G.
, and
Thome
,
J. R.
, 1994,
Convective Boiling and Condensation
, 3rd ed.,
Oxford University Press
,
New York
.
35.
Kuo
,
C. -J.
, and
Peles
,
Y.
, 2008, “
Critical Heat Flux of Water at Sub-Atmospheric Pressures in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
130
(
7
), p.
072403
.
36.
Carey
,
V. P.
, 1992,
Liquid-Vapor Phase-Change Phenomena
,
Taylor and Francis
,
London
.
37.
Koşar
,
A.
, and
Peles
,
Y.
, 2007, “
Critical Heat Flux of R-123 in Silicon-Based Microchannels
,”
ASME J. Heat Transfer
0022-1481,
129
(
7
), pp.
844
851
.
38.
Revellin
,
R.
, and
Thome
,
J. R.
, 2008, “
A Theoretical Model for the Prediction of the Critical Heat Flux in Heated Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
5-6
), pp.
1216
1225
.
39.
Gambill
,
W. R.
, and
Lienhard
,
J. H.
, 1987, “
An Upper Bound for the Critical Boiling Heat Flux
,”
Proceedings of ASME-JSME Thermal Engineering Joint Conference
, Vol.
3
, pp.
621
626
.
40.
Kuan
,
W. K.
, and
Kandlikar
,
S. G.
, 2006, “
Experimental Study on Saturated Flow Boiling Critical Heat Flux in Microchannels
,”
Proceedings of the 4th International Conference on Nanochannels, Microchannels and Minichannels
, pp.
45
52
.
41.
Wojtan
,
L.
,
Revellin
,
R.
, and
Thome
,
J. R.
, 2006, “
Investigation of Saturated Critical Heat Flux in a Single, Uniformly Heated Microchannel
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
(
8
), pp.
765
774
.
You do not currently have access to this content.