Thermal management issues have become a major bottleneck for further miniaturization and increased power consumption of electronics. Power electronics require more increasing use of high heat flux cooling technologies. Spray cooling with phase change has the advantage of large amount of heat transfer from the hot surface of many power electronics. Spray cooling is a complex phenomenon due to the interaction of liquid, vapor, and phase change at small length scale. A good understanding of the underlying physics and the heat removal process in spray cooling through numerical modeling is needed to design efficient spray cooling system. A computational fluid dynamics based 3D multiphase model for spray cooling is developed here in parallel computing environment using multigrid conjugate gradient solver. This model considers the effect of surface tension, gravity, phase change, and viscosity. The level set method is used to capture the movement of the liquid-vapor interface. The governing equations are solved using finite difference method. Spray cooling is studied using this model, where a vapor bubble is growing in a thin liquid film on a hot surface and a droplet is impacting on the thin film. The symmetry boundary condition considered on four sides of the domain effectively represents a large spray made up of multiple equally sized droplets and bubbles and their interaction. Studies have also been performed for different wall superheats in the absence of vapor bubble to compare the effect of two-phase heat transfer compared to single-phase in spray cooling. The computed interface, temperature, and heat flux distributions at different times over the domain are visualized for better understanding of the heat removal mechanism.

1.
Mudawar
,
I.
, 2001, “
Assessment of High Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
, pp.
122
141
.
2.
Yang
,
J.
,
Chow
,
L. C.
, and
Paris
,
M. R.
, 1996, “
Nucleate Boiling Heat Transfer in Spray Cooling
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
668
671
.
3.
Chow
,
L. C.
,
Sehembey
,
M. S.
, and
Paris
,
M. R.
, 1997, “
High Heat Flux Spray Cooling
,”
Annu. Rev. Heat Transfer
1049-0787,
8
, pp.
291
318
.
4.
Lin
,
L.
, and
Ponnappan
,
R.
, 2003, “
Heat Transfer Characteristics of Spray Cooling in a Close Loop
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3737
3746
.
5.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
, 1994, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
0021-9991,
114
, pp.
146
159
.
6.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
J.
, and
Jan
,
Y.-J.
, 2001, “
A Front-Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
0021-9991,
169
, pp.
708
759
.
7.
Son
,
G.
, and
Dhir
,
V. K.
, 1998, “
Numerical Simulation of Film Boiling Near Critical Pressures With a Level Set Method
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
183
192
.
8.
Yoon
,
H. Y.
,
Koshizuka
,
S.
, and
Oka
,
Y.
, 2001, “
Direct Calculation of Bubble Growth, Departure, and Rise in Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
0301-9322,
27
, pp.
277
298
.
9.
Welch
,
S. W. J.
, and
Wilson
,
J.
, 2000, “
A Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
J. Comput. Phys.
0021-9991,
160
, pp.
662
682
.
10.
Pasandideh-Fard
,
M.
,
Aziz
,
S. D.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 2001, “
Cooling Effectiveness of Water Drop Impinging on Hot Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
22
, pp.
201
210
.
11.
Selvam
,
R. P.
,
Sarkar
,
S.
, and
Sarkar
,
M.
, 2007, “
Modeling Multiphase Flow and Heat Transfer—Current Status and Future Challenges
,” Invited paper in the
Proceedings of the Seventh Asian Computational Fluid Dynamics Conference
, IISC, Bangalore, India, Nov. 26–30.
12.
Sarkar
,
S.
, 2008, “
3-D Multiphase Flow Modeling of Spray Cooling in Parallel Computing
,” Ph.D. thesis, University of Arkansas, Fayetteville, AR.
13.
Selvam
,
R. P.
,
Lin
,
L.
, and
Ponnappan
,
R.
, 2006, “
Direct Simulation of Spray Cooling: Effect of Vapor Bubble Growth and Liquid Droplet Impact on Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
4265
4278
.
14.
Pautsch
,
A. G.
, and
Shedd
,
T. A.
, 2005, “
Spray Impingement Cooling With Single- and Multiple-Nozzle Arrays—Part I: Heat Transfer Data Using FC-72
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3167
3175
.
15.
Juric
,
D.
, and
Tryggvason
,
G.
, 1998, “
Computations of Boiling Flows
,”
Int. J. Multiphase Flow
0301-9322,
24
, pp.
387
410
.
16.
Son
,
G.
, 2001, “
A Numerical Method for Bubble Motion With Phase Change
,”
Numer. Heat Transfer, Part B
1040-7790,
39
, pp.
509
523
.
17.
Son
,
G.
, 2005, “
A Level Set Method for Incompressible Two-Fluid Flows With Immersed Solid Boundaries
,”
Numer. Heat Transfer, Part B
1040-7790,
47
, pp.
473
489
.
18.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
19.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zamach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
20.
Gropp
,
W.
,
Lusk
,
E.
, and
Skjellum
,
A.
, 1999,
Using MPI: Portable Parallel Programming With the Message-Passing Interface
,
2nd ed.
,
MIT
,
Cambridge, MA
.
21.
Ferziger
,
J. H.
, and
Peric
,
M.
, 2002,
Computational Methods for Fluid Dynamics
,
Springer
,
New York
.
22.
Selvam
,
R. P.
, 1996, “
Multigrid Methods for Computational Wind Engineering
,” Computational Mechanics Laboratory, Department of Civil Engineering, University of Arkansas, Report No. 19961.
23.
Baysinger
,
K. M.
, 2004, “
Design of a Microgravity Spray Cooling Experiment
,” AIAA Paper No. AIAA-2004-0966.
24.
Harris
,
R. J.
, 2004, private communications, University of Dayton Research Institute, Dayton, OH.
25.
Pais
,
M. R.
,
Tilton
,
D.
, and
Chow
,
L. C.
, 1989, “
High Heat Flux, Low Superheat Evaporative Spray Cooling
,” AIAA Paper No. AIAA 89-024.
26.
Rini
,
D.
,
Chen
,
R. -H.
, and
Chow
,
L.
, 2002, “
Bubble Behavior and Nucleate Boiling Heat Transfer in Saturated FC-72 Spray Cooling
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
63
72
.
27.
Pais
,
M.
,
Chow
,
L.
, and
Mahefkey
,
E.
, 1992, “
Surface Roughness and Its Effects on the Heat Transfer Mechanism of Spray Cooling
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
211
219
.
28.
Silk
,
E. A.
,
Golliher
,
E. L.
, and
Selvam
,
R. P.
, 2008, “
Spray Cooling Heat Transfer: Technology Overview and Assessment of Future Challenges for Micro-Gravity Application
,”
Energy Convers. Manage.
0196-8904,
49
, pp.
453
468
.
You do not currently have access to this content.