We perform a constructal design of particle volume fraction of four types of nanofluids used for heat conduction in four systems: a circular disk, a sphere, a plane slab, and a circular annulus. The constructal volume fraction is obtained to minimize system overall temperature difference and overall thermal resistance. Also included are the features of the constructal volume fraction and the corresponding constructal thermal resistance, which is the minimal overall resistance to the heat flow. The constructal nanofluids that maximize the system performance are not necessarily the ones with uniformly dispersed particles in base fluids. Nanofluids research and development should thus focus on not only nanofluids but also systems that use them. The march toward micro- and nanoscales must also be with the sobering reminder that useful devices are always macroscopic, and that larger and larger numbers of small-scale components must be assembled and connected by flows that keep them alive.

1.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
, and
Keblinski
,
P.
, 2004, “
Nanofluids
,”
Encyclopedia of Nanoscience and Nanotechnology
, Vol.
6
,
H. S.
Nalwa
, ed.,
American Scientific
,
New York
, pp.
757
773
.
2.
Peterson
,
G. P.
, and
Li
,
C. H.
, 2006, “
Heat and Mass Transfer in Fluids With Nanoparticle Suspensions
,”
Adv. Heat Transfer
0065-2717,
39
, pp.
257
376
.
3.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W. H.
, and
Pradeep
,
T.
, 2008,
Nanofluids: Science and Technology
,
Wiley
,
Hoboken, NJ
.
4.
Wu
,
D. X.
,
Zhu
,
H. T.
,
Wang
,
L. Q.
, and
Liu
,
L. M.
, 2009, “
Critical Issues in Nanofluids Preparation, Characterization and Thermal Conductivity
,”
Curr. Nanosci.
1573-4137,
5
, pp.
103
112
.
5.
Choi
,
S. U. S.
, 2009, “
Nanofluids: From Vision to Reality Through Research
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
033106
.
6.
Wang
,
L. Q.
, and
Wei
,
X. H.
, 2009, “
Nanofluids: Synthesis, Heat Conduction, and Extension
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
033102
.
7.
Li
,
C. H.
,
Williams
,
W.
,
Buongiorno
,
J.
,
Hu
,
L. W.
, and
Peterson
,
G. P.
, 2008, “
Transient and Steady-State Experimental Comparison Study of Effective Thermal Conductivity of Al2O3/Water Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
040301
.
8.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2007, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
617
623
.
9.
Vadasz
,
P.
, 2006, “
Heat Conduction in Nanofluid Suspensions
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
465
477
.
10.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
11.
Wei
,
X. H.
,
Zhu
,
H. T.
, and
Wang
,
L. Q.
, 2009, “
CePO4 Nanofluids: Synthesis and Thermal Conductivity
,”
J. Thermophys. Heat Transfer
0887-8722,
23
, pp.
219
222
.
12.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
13.
Tzou
,
D. Y.
, 2008, “
Instability of Nanofluids in Natural Convection
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
072401
.
14.
Tzou
,
D. Y.
, 2008, “
Thermal Instability of Nanofluids in Natural Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
2967
2979
.
15.
Buongiorno
,
J.
, 2006, “
Convection Transport in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
240
250
.
16.
Xuan
,
Y. M.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
151
155
.
17.
Milanova
,
D.
, and
Kumar
,
R.
, 2008, “
Heat Transfer Behavior of Silica Nanoparticles Experiment in Pool Boiling
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
042401
.
18.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2008, “
Alumina Nanoparticles Enhance the Flow Boiling Critical Heat Flux of Water at Low Pressure
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
044501
.
19.
Kim
,
S. J.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2009, “
Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
043204
.
20.
Kedzierski
,
M. A.
, 2009, “
Effect of CuO Nanoparticle Concentration on R134a/Lubricant Pool-Boiling Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
043205
.
21.
Bejan
,
A.
, and
Lorente
,
S.
, 2008,
Design With Constructal Theory
,
Wiley
,
Hoboken, NJ
.
22.
Reis
,
A. H.
, 2006, “
Constructal Theory: From Engineering to Physics, and How Flow Systems Develop Shape and Structure
,”
Appl. Mech. Rev.
0003-6900,
59
, pp.
269
282
.
23.
Bejan
,
A.
, and
Lorente
,
S.
, 2006, “
Constructal Theory of Configuration Generation in Nature and Engineering
,”
J. Appl. Phys.
0021-8979,
100
, p.
041301
.
24.
Wang
,
L. Q.
, 1996, “
An Approach for Thermodynamic Reasoning
,”
Int. J. Mod. Phys. B
0217-9792,
10
, pp.
2531
2551
.
This content is only available via PDF.
You do not currently have access to this content.