To create functional metal parts by depositing molten metal droplets on top of each other, we have to obtain good metallurgical bonding between droplets. To investigate conditions under which such bonds are achieved, experiments were conducted in which vertical columns were formed by depositing molten aluminum alloy (A380) droplets on top of each other. A pneumatic droplet generator was used to create uniform, 0.8 mm diameter, molten aluminum droplets. The droplet generator was mounted on a stepper motor and moved constantly so as to maintain a fixed distance between the generator nozzle and the tip of the column being formed. The primary parameters varied in experiments were those found to have the strongest effect on bonding between droplets: substrate temperature (250450°C) and deposition rate (1–8 Hz). Droplet temperature was constant at 620°C. To achieve metallurgical bonding between droplets, the tip temperature of the column should be maintained slightly below the melting temperature of the alloy to ensure remelting under an impacting drop and good bonding. The temperature cannot exceed the melting point of the metal; otherwise the column tip melts down. The temperature at the bottom of a column was measured while droplets were being deposited. An analytical one-dimensional heat conduction model was developed to obtain the transient temperature profile of the column, assuming the column and the substrate to be a semi-infinite body exposed to a periodic heat flux. From the model, the droplet deposition frequency required to maintain the tip temperature at the melting point of the metal was calculated.

1.
Ashley
,
S.
, 1995, “
Rapid Prototyping Is Coming of Age
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
117
, pp.
62
68
.
2.
Hopkinson
,
N.
, and
Dickens
,
P.
, 2001, “
Rapid Prototyping for Direct Manufacture
,”
Rapid Prototyping J.
1355-2546,
7
, pp.
197
202
.
3.
Gao
,
F.
, and
Sonin
,
A.
, 1994, “
Precise Deposition of Molten Microdrops: The Physics of Digital Microfabrication
,”
Proc. R. Soc. London, Ser. A
1364-5021: Math. Phys. Sci. (UK),
444
(
1922
), pp.
533
554
.
4.
Chang
,
S.
,
Attinger
,
D.
,
Chiang
,
F. P.
,
Zhao
,
Y.
, and
Patel
,
R. C.
, 2004, “
SIEM Measurements of Ultimate Tensile Strength and Tensile Modulus of Jetted, UV-Cured Epoxy Resin Microsamples
,”
Rapid Prototyping J.
1355-2546,
10
, pp.
193
198
.
5.
Sui
,
G.
, and
Leu
,
M. C.
, 2003, “
Investigation of Layer Thickness and Surface Roughness in Rapid Freeze Prototyping
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
556
563
.
6.
Sui
,
G.
, and
Leu
,
M. C.
, 2003, “
Thermal Analysis of Ice Walls Built by Rapid Freeze Prototyping
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
824
834
.
7.
Amon
,
C. H.
,
Schmaltz
,
K. S.
, and
Prinz
,
F. B.
, 1996, “
Numerical and Experimental Investigation of Interface Bonding Via Substrate Remelting of an Impinging Molten Metal Droplet
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
164
172
.
8.
Orme
,
M.
, and
Huang
,
C.
, 1997, “
Phase Change Manipulation for Droplet-Based Solid Freeform Fabrication
,”
ASME J. Heat Transfer
0022-1481,
119
, pp.
818
823
.
9.
Tseng
,
A. A.
,
Lee
,
M. H.
, and
Zhao
,
B.
, 2001, “
Design and Operation of a Droplet Deposition System for Freeform Fabrication of Metal Parts
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
, pp.
74
84
.
10.
Madejski
,
J.
, 1976, “
Solidification of Droplets on a Cold Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
19
, pp.
1009
1013
.
11.
Bennett
,
T.
, and
Poulikakos
,
D.
, 1993, “
Splat-Quench Solidification: Estimating the Maximum Spreading of a Droplet Impacting a Solid Surface
,”
J. Mater. Sci.
0022-2461,
28
, pp.
963
970
.
12.
Liu
,
W.
,
Wang
,
G. X.
, and
Matthys
,
E. F.
, 1995, “
Thermal Analysis and Measurements for a Molten Metal Drop Impacting on a Substrate: Cooling, Solidification and Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
1387
1395
.
13.
Schiaffino
,
S.
, and
Sonin
,
A.
, 1997, “
Molten Droplet Deposition and Solidification at Low Weber Numbers
,”
Phys. Fluids
1070-6631,
9
, pp.
3172
3187
.
14.
Rangel
,
R. H.
, and
Bian
,
X.
, 1997, “
Metal-Droplet Deposition Model Including Liquid Deformation and Substrate Remelting
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2549
2564
.
15.
Pasandideh-Fard
,
M.
,
Bhola
,
R.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 1998, “
Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
2929
2945
.
16.
Haferl
,
S.
, and
Poulikakos
,
D.
, 2002, “
Transport and Solidification Phenomena in Molten Microdroplet Pileup
,”
J. Appl. Phys.
0021-8979,
92
(
3
), pp.
1675
1689
.
17.
Haferl
,
S.
, and
Poulikakos
,
D.
, 2003, “
Experimental Investigation of the Transient Impact Fluid Dynamics and Solidification of a Molten Microdroplet Pile-Up
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
535
550
.
18.
Xu
,
Q.
,
Gupta
,
V. V.
, and
Lavernia
,
J.
, 2000, “
Thermal Behavior During Droplet-Based Deposition
,”
Acta Mater.
1359-6454,
48
, pp.
835
849
.
19.
Ghafouri-Azar
,
R.
,
Mostaghimi
,
J.
, and
Chandra
,
S.
, 2004, “
Numerical Study of Impact and Solidification of a Droplet Over a Deposited Frozen Splat
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
18
, pp.
133
138
.
20.
Fang
,
M.
,
Chandra
,
S.
, and
Park
,
C. B.
, 2007, “
Experiments on Remelting and Solidification of Molten Metal Droplets Deposited in Vertical Columns
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
, pp.
311
318
.
21.
Cheng
,
S. X.
,
Li
,
T.
, and
Chandra
,
S.
, 2005, “
Producing Molten Metal Droplets With a Pneumatic Droplet-on-Demand Generator
,”
J. Mater. Process. Technol.
0924-0136,
159
, pp.
295
302
.
22.
Yim
,
P.
, 1996, “
The Role of Surface Oxidation in the Break-Up of Laminar Liquid Metal Jets
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
23.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
2nd ed.
,
Oxford University Press
,
Oxford, UK
.
24.
Myers
,
G. E.
, 1971,
Analytical Methods in Conduction Heat Transfer
,
McGraw-Hill
,
New York
.
25.
Ozisik
,
M. N.
, 1980,
Heat Conduction
,
Wiley
,
New York
.
26.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
4th ed.
,
Wiley
,
New York
.
You do not currently have access to this content.