Heat mass exchangers are crucial for the prevention of epidemic respiratory diseases such as H1N1 (swine flu). The flow maldistribution affects their performance seriously. The flow maldistribution and the consequent performance deteriorations in heat and mass exchangers are investigated. The focus is on moisture effectiveness deteriorations. As a first step, a computational fluid dynamics (CFD) code is used to calculate the flow distribution, by treating the plate-fin core as a porous medium. Then a coupled heat and moisture transfer model between the two air flows in the plate-fin channels is set up with slug flow assumption in the channels. Using the CFD predicted core face flow distribution data, the sensible heat and moisture exchange effectiveness and the performance deterioration factors are calculated with finite difference scheme. The results indicate that under current core to whole exchanger pressure drop ratio, when the channel pitch is below 2.0 mm, the flow distribution is quite homogeneous and the sensible and latent performance deteriorations due to flow maldistribution can be neglected. However, when the channel pitch is larger than 2 mm, the maldistribution is quite large and a 10–15% thermal deterioration factor and a 20–25% latent deterioration factor could be found. Mass transfer deteriorates much more than heat transfer does due to larger mass transfer resistance through membranes.

1.
Zhang
,
L. Z.
, 2008,
Total Heat Recovery: Heat and Moisture Recovery From Ventilation Air
,
Nova Science
,
New York
, Chap. 1, pp.
2
10
.
2.
Kistler
,
K. R.
, and
Cussler
,
E. L.
, 2002, “
Membrane Modules for Building Ventilation
,”
Chem. Eng. Res. Des.
0263-8762,
80
, pp.
53
64
.
3.
Zhang
,
L. Z.
, and
Niu
,
J. L.
, 2002, “
Effectiveness Correlations for Heat and Moisture Transfer Processes in an Enthalpy Exchanger With Membrane Cores
,”
ASME J. Heat Transfer
0022-1481,
124
(
5
), pp.
922
929
.
4.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
, pp.
253
260
.
5.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1996,
Introduction to Heat Transfer
,
3rd ed.
,
Wiley
,
New York
, Chap. 8, p.
416
.
6.
Shah
,
R. K.
, and
Bhatti
,
M. S.
, 1987, “
Laminar Convection Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
.
7.
Chen
,
S.
,
Chan
,
T. L.
, and
Leung
,
C. W.
, 2000, “
Numerical Prediction of Laminar Forced Convection in Triangular Ducts With Unstructured Triangular Grid Method
,”
Numer. Heat Transf., Part A: Applications
,
38
(
2
), pp.
209
224
.
8.
Baliga
,
B. R.
, and
Azrak
,
R. R.
, 1986, “
Laminar Fully Developed Flow and Heat Transfer in Triangular Plate-Fin Ducts
,”
ASME J. Heat Transfer
0022-1481,
108
, pp.
24
32
.
9.
Zhang
,
L. Z.
, 2007, “
Thermally Developing Forced Convection and Heat Transfer in Rectangular Plate-Fin Passages Under Uniform Plate Temperature
,”
Numer. Heat Transfer, Part A
1040-7782,
52
, pp.
549
564
.
10.
Zhang
,
L. Z.
, 2007, “
Laminar Flow and Heat Transfer in Plate-Fin Triangular Ducts in Thermally Developing Entry Region
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
1637
1640
.
11.
Zhang
,
L. Z.
, 2008, “
Heat and Mass Transfer in Plate-Fin Sinusoidal Passages With Vapor-Permeable Wall Materials
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
618
629
.
12.
Zhang
,
L. Z.
,
Liang
,
C. H.
, and
Pei
,
L. X.
, 2008, “
Heat and Moisture Transfer in Application-Scale Parallel-Plates Enthalpy Exchangers With Novel Membrane Materials
,”
J. Membr. Sci.
0376-7388,
325
, pp.
672
682
.
13.
Zhang
,
L. Z.
, 2007, “
Heat and Mass Transfer in a Cross Flow Membrane-Based Enthalpy Exchanger Under Naturally Formed Boundary Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
151
162
.
14.
Bassiouny
,
M. K.
, and
Martin
,
H.
, 1984, “
Flow Distribution and Pressure Drop in Plate Heat Exchangers-I, U-Type Arrangement
,”
Chem. Eng. Sci.
0009-2509,
39
, pp.
693
700
.
15.
Bassiouny
,
M. K.
, and
Martin
,
H.
, 1984, “
Flow Distribution and Pressure Drop in Plate Heat Exchangers-II, Z-Type Arrangement
,”
Chem. Eng. Sci.
0009-2509,
39
, pp.
701
704
.
16.
Prabhakara Rao
,
B.
,
Kumar
,
P. K.
, and
Das
,
S. K.
, 2002, “
Effect of Flow Distribution to the Channels on the Thermal Performance of a Plate Heat Exchanger
,”
Chem. Eng. Process.
0255-2701,
41
, pp.
49
58
.
17.
Dwivedi
,
A. K.
, and
Das
,
S. K.
, 2007, “
Dynamics of Plate Heat Exchangers Subject to Flow Variations
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
2733
2743
.
18.
Shah
,
R. K.
, 1985, “
Flow Maldistribution-Compact Heat Exchangers
,”
Handbook of Heat Transfer Applications
,
W. M.
Rohsenow
,
P. J.
Hartnett
, and
E. N.
Ganic
, eds.,
McGraw-Hill
,
New York
, pp.
266
280
.
19.
Ranganayakulu
,
Ch.
,
Seetharamu
,
K. N.
, and
Sreevatsan
,
K. V.
, 1997, “
The Effects of Inlet Fluid Flow Nonuniformity on Thermal Performance and Pressure Drops in Crossflow Plate-Fin Compact Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
27
38
.
20.
Zhang
,
L. Z.
, “
Flow Maldistribution and Thermal Performance Deterioration in a Cross-Flow Air to Air Heat Exchanger With Plate-Fin Cores
,”
Int. J. Heat Mass Transfer
0017-9310, in press; available online doi:10.1016/j.ijheatmasstransfer.2009.03.049.
21.
Galeazzo
,
F. C. C.
,
Miura
,
R. Y.
,
Gut
,
J. A. W.
, and
Tadini
,
C. C.
, 2006, “
Experimental and Numerical Heat Transfer in a Plate Heat Exchanger
,”
Chem. Eng. Sci.
0009-2509,
61
, pp.
7133
7138
.
22.
Bansode
,
A. S.
,
Patel
,
S.
,
Kumar
,
T. R.
,
Muralidhar
,
B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, 2007, “
Numerical Simulation of Effects of Flow Maldistribution on Heat and Mass Transfer in a PEM Fuel Cell Stack
,”
Heat Mass Transfer
0947-7411,
43
, pp.
1037
1047
.
You do not currently have access to this content.