The problem of therporacoustic (thermal-porous-acoustic) convection near a porous medium, representative of a stack in a thermoacoustic engine/refrigerator, is modeled and analyzed in this paper. Assumptions (e.g., long wave, short stack, and small amplitude oscillation) are made to enable simplification of the governing unsteady-compressible-viscous forms of the continuity, momentum, and energy equations to achieve analytical solutions for the fluctuating velocity and temperature and the complex Nusselt number. Boundary walls are assumed to be very thin in thickness and the conduction heat transfer inside the boundary walls are neglected in this paper. The derived analytical results are expressed mainly in terms of the Darcy number (Da), critical temperature gradient ratio (Γ0), Swift number (Sw), Prandtl number (Pr), and modified Rott’s and Swift’s parameters (fν and fk). The real part of the fluctuating flow complex Nusselt number approaches to the steady result, as reported in the literature, at the zero frequency limit. While in the high frequency limit, the real part of the complex Nusselt number matches well with the limit obtained by other oscillating flow researchers with slight differences explained by additional terms included in this work. A wave equation for the pressure fluctuation is modeled by combining the continuity, momentum, and energy equations and subsequent integrations which, in the inviscid no-stack limit, approaches the Helmholtz wave equation. Based on the derived energy flux density equation performance plots are proposed, which give the Swift number at the maximum energy transfer (Sw0) for a given Γ0 and Da.

1.
Nield
,
D. A.
, and
Bejan
,
A.
, 2006,
Convection in Porous Media
,
3rd ed.
,
Springer-Verlag
,
Berlin
.
2.
Ingham
,
D. B.
, and
Pop
,
I.
, 1998,
Transport Phenomena in Porous Media
,
Pergamon
,
Oxford
.
3.
Ingham
,
D. B.
, and
Pop
,
I.
, 2002,
Transport Phenomena in Porous Media II
,
Pergamon
,
Amsterdam
.
4.
Bejan
,
A.
,
Dincer
,
I.
,
Lorent
,
S.
,
Miguel
,
A. F.
, and
Reis
,
A. H.
, 2004,
Porous and Complex Flow Structures in Modern Technologies
,
Springer-Verlag
,
New York
.
5.
Scheiddeger
,
A. E.
, 1957,
The Physics of Flow Through Porous Media
,
Macmillan
,
New York
.
6.
Bejan
,
A.
, 1987, “
Convective Heat Transfer in Porous Media
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakaç
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
.
7.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
,
Springer-Verlag
,
New York
.
8.
Vafai
,
K.
, 2000,
Handbook of Porous Media
,
Dekker
,
New York
.
9.
Swift
,
G. W.
, 2002,
Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators
,
ASA
,
Melville, NY
.
10.
Adeff
,
J. A.
,
Hofler
,
T. J.
,
Atchley
,
A. A.
, and
Moss
,
W. C.
, 1998, “
Measurements With Reticulated Vitreous Carbon Stacks in Thermoacoustic Prime Movers and Refrigerators
,”
J. Acoust. Soc. Am.
0001-4966,
104
, pp.
32
38
.
11.
Swift
,
G. W.
, 1988, “
Thermoacoustic Engines
,”
J. Acoust. Soc. Am.
0001-4966,
84
, pp.
1145
1180
.
12.
Rott
,
N.
, 1980, “
Thermoacoustics
,”
Adv. Appl. Mech.
0065-2156,
20
, pp.
135
175
.
13.
Mahmud
,
S.
, and
Fraser
,
R. A.
, 2004, “
Flow and Heat Transfer Inside Porous Stack: Steady State Problem
,”
Int. Commun. Heat Mass Transfer
0735-1933,
31
, pp.
951
962
.
14.
Mahmud
,
S.
, and
Fraser
,
R. A.
, 2004, “
Entropy—Energy Analysis of Porous Stack: Steady State Conjugate Problem
,”
Int. J. Exergy
1742-8297,
1
, pp.
385
398
.
15.
Mahmud
,
S.
, and
Fraser
,
R. A.
, 2005, “
Conjugate Heat Transfer Inside a Porous Channel
,”
Heat Mass Transfer
0947-7411,
41
, pp.
568
575
.
16.
Mahmud
,
S.
, and
Fraser
,
R. A.
, 2003, “
Vibrational Effect on Entropy Generation in a Square Porous Cavity
,”
Entropy
1099-4300,
5
, pp.
366
376
.
17.
Mahmud
,
S.
, and
Fraser
,
R. A.
, 2003, “
Free Convection and Irreversibility Analysis Inside a Circular Porous Enclosure
,”
Entropy
1099-4300,
5
, pp.
358
365
.
18.
Leong
,
K. C.
, and
Jin
,
L. W.
, 2004, “
Heat Transfer of Oscillating and Steady Flows in a Channel Filled With Porous Media
,”
Int. Commun. Heat Mass Transfer
0735-1933,
31
, pp.
63
72
.
19.
Leong
,
K. C.
, and
Jin
,
L. W.
, 2005, “
An Experimental Study of Heat Transfer in Oscillating Flow Through a Channel Filled With an Aluminum Foam
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
243
253
.
20.
Fu
,
H. L.
,
Leong
,
K. C.
,
Huang
,
X. Y.
, and
Liu
,
C. Y.
, 2001, “
An Experimental Study of Heat Transfer of a Porous Channel Subjected to Oscillating Flow
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
162
170
.
21.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
, 2006, “
Forced Convection With Laminar Pulsating Flow in a Saturated Porous Channel or Tube
,”
Transp. Porous Media
0169-3913,
65
, pp.
505
523
.
22.
Organ
,
A. J.
, 1992,
Thermodynamics and Gas Dynamics of the Stirling Cycle Machine
,
Cambridge University Press
,
Cambridge, England
.
23.
Vafai
,
K.
, and
Kim
,
C. L.
, 1990, “
Analysis of Surface Enhancement by a Porous Substrate
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
700
706
.
24.
Bejan
,
A.
, 1984,
Convection Heat Transfer
,
Wiley
,
New York
.
25.
Bejan
,
A.
, 2003, “
Porous Media
,”
Heat Transfer Handbook
,
A.
Bejan
and
A. D.
Kraus
, eds.,
Wiley
,
New York
.
26.
Darcy
,
H.
, 1856,
Les Fontaines Publiques de la Ville de Dijon
,
Victor Dalamont
,
Paris
.
27.
Vafai
,
K.
, and
Tien
,
C. L.
, 1981, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
24
, pp.
195
203
.
28.
Forchheimer
,
P. H.
, 1901, “
Wasserbewegung durch Boden
,”
Z. Ver. Dtsch. Ing.
0341-7255,
45
, pp.
1782
1788
.
29.
Kaviany
,
M.
, 1985, “
Laminar Flow Through a Porous Channel Bounded by Isothermal Parallel Plates
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
851
858
.
30.
Haji-Sheikh
,
A.
,
Nield
,
D. A.
, and
Hooman
,
K.
, 2006, “
Heat Transfer in the Thermal Entrance Region for Flow Through Rectangular Porous Passages
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
3004
3015
.
31.
Kinsler
,
L. W.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
, 2000,
Fundamentals of Acoustic
,
Wiley
,
New York
.
32.
Burmeister
,
L. C.
, 1993,
Convective Heat Transfer
,
Wiley
,
New York
.
33.
Mahmud
,
S.
, and
Fraser
,
R. A.
, 2005, “
An Analytical Solution and Computer Simulation for a Multi-Plate Thermoacoustic System
,”
Int. J. Exergy
1742-8297,
2
, pp.
207
230
.
34.
Lu
,
G.
, and
Cheng
,
P.
, 2000, “
Friction Factor and Nusselt Number for Thermoacoustic Transport Phenomena in a Tube
,”
J. Thermophys. Heat Transfer
0887-8722,
14
, pp.
566
573
.
35.
Liu
,
J.
, and
Garrett
,
S. L.
, 2006, “
Relationship Between Nusselt Number and the Thermoviscous (Rott) Functions
,”
J. Acoust. Soc. Am.
0001-4966,
119
, pp.
1457
1462
.
36.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1982,
Fluid Mechanics
,
Pergamon
,
New York
.
37.
Cao
,
N.
,
Olson
,
J. R.
,
Swift
,
G. W.
, and
Chen
,
S.
, 1996, “
Energy Flux Density in a Thermoacoustic Couple
,”
J. Acoust. Soc. Am.
0001-4966,
99
, pp.
3456
3464
.
38.
Ishikawa
,
H.
, and
Mee
,
D. J.
, 2002, “
Numerical Investigation of Flow and Energy Fields Near a Thermoacoustic Couple
,”
J. Acoust. Soc. Am.
0001-4966,
111
, pp.
831
839
.
39.
Bejan
,
A.
, 2006,
Advanced Engineering Thermodynamics
,
Wiley
,
New York
.
40.
Garrett
,
S. L.
, 2004, “
Resource Letter TA-1: Thermoacoustic Engines and Refrigerators
,”
Am. J. Phys.
0002-9505,
72
, pp.
11
17
.
41.
ERG
, 2005, Materials and Aerospace Corporation, 900 Stanford Avenue, Oakland, CA.
You do not currently have access to this content.