High porosity open-cell metal foam is considered to be an attractive choice for compact heat exchanger applications because of its high area density and superior thermal performance. A systematic study has been made in the present article to verify the suitability of the porous material as an extended heat transfer surface. The area goodness (j/f) factor has been chosen as performance evaluation criterion. This governing parameter has been computed using the existing correlations for the heat transfer and pressure drop coefficients. Conservative estimate shows that the thermohydraulic characteristics of high porosity open-cell metal foam are almost alike, if not better than those of the conventional heat transfer surfaces. Importantly, the analysis has been found to be consistent with the Reynolds analogy. This study helps the designer in making the initial selection of foam surfaces for the heat exchanger application.

1.
Shah
,
R. K.
, 1980, “
Classification of Heat Exchangers
,”
Heat Exchangers, Thermal-Hydraulic Fundamentals and Design
,
S.
Kakac
,
A.
Bergles
, and
F.
Mayinger
, eds.,
Hemisphere
,
Washington, DC
, pp.
9
46
.
2.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
, 1998, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
1359-6454,
46
(
10
), pp.
3619
3635
.
3.
Fuller
,
A. J.
,
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
, 2005, “
Measurement and Interpretation of the Heat Transfer Coefficients of Metal Foams
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
219
, pp.
183
191
.
4.
Shah
,
R. K.
, 1978, “
Compact Heat Exchanger Surface Selection Methods
,”
Proceedings of the Sixth International Heat Transfer Conference
, Toronto, Canada, pp.
193
199
.
5.
London
,
A. L.
, and
Ferguson
,
C. K.
, 1949, “
Test Results of High-Performance Heat Exchanger Surfaces Used in Aircraft Intercoolers and Their Significance for Gas-Turbine Regenerator Design
,”
Trans. ASME
0097-6822,
71
, pp.
17
26
.
6.
Cowell
,
T. A.
, 1990, “
A General Method for the Comparison of Compact Heat Transfer Surfaces
,”
ASME Trans. J. Heat Transfer
0022-1481,
112
, pp.
288
294
.
7.
Hesselgreaves
,
J. E.
, 2001,
Compact Heat Exchangers: Selection, Design and Operation
,
Pergamon
,
Oxford, UK
.
8.
Sekulic
,
D. P.
,
Campo
,
A.
, and
Morales
,
J. C.
, 1997, “
Irreversibility Phenomena Associated With Heat Transfer and Fluid Friction in Laminar Flows Through Singly Connected Ducts
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
4
), pp.
905
914
.
9.
Sahiti
,
N.
,
Durst
,
F.
, and
Dewan
,
A.
, 2006, “
Strategy for Selection of Elements for Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
3392
3400
.
10.
Soland
,
G. J.
,
Mack
,
W. M.
, Jr.
, and
Rohsenow
,
W. M.
, 1978, “
Performance Ranking of Plate-Fin Heat Exchanger Surfaces
,”
ASME Trans. J. Heat Transfer
0022-1481,
100
, pp.
514
519
.
11.
Joshi
,
H. M.
, and
Webb
,
R. L.
, 1987, “
Heat Transfer and Friction in the Offset Strip-Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
1
), pp.
69
84
.
12.
Manglik
,
R. M.
, and
Bergles
,
A. E.
, 1995, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
171
180
.
13.
Kays
,
W. M.
, and
London
,
A. L.
, 1984,
Compact Heat Exchangers
,
3rd ed.
,
McGraw-Hill
,
New York
.
14.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 2001, “
Modeling the F and J Characteristics for Transverse Flow Through an Offset Strip Fin at Low Reynolds Number
,”
J. Enhanced Heat Transfer
1065-5131,
8
, pp.
261
277
.
15.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
The Effective Thermal Conductivity of High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
466
471
.
16.
Lee
,
D. Y.
, and
Vafai
,
K.
, 1999, “
Analytical Characterisation and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
423
435
.
17.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
, 2000, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
0195-928X,
21
(
2
), pp.
453
464
.
18.
Du Plessis
,
P.
,
Montilet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
, 1994, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
0009-2509,
49
(
21
), pp.
3545
3553
.
19.
Bejan
,
A.
, 1993,
Heat Transfer
,
Wiley
,
New York
.
20.
Antohe
,
B. V.
,
Lage
,
J. L.
,
Price
,
D. C.
, and
Weber
,
R. M.
, 1996, “
Numerical Characterization Micro Heat Exchangers Using Experimentally Tested Porous Aluminum Layers
,”
Int. J. Heat Fluid Flow
0142-727X,
17
(
6
), pp.
594
603
.
21.
Kiwan
,
S.
, and
Al-Nimr
,
M. A.
, 2001, “
Using Porous Fins for Heat Transfer Enhancement
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
790
795
.
22.
Alkam
,
M. K.
,
Al-Nimr
,
M. A.
, and
Hamdan
,
M. O.
, 2001, “
Enhancing Heat Transfer in Parallel-Plate Channels by Using Porous Inserts
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
931
938
.
23.
Dukhan
,
N.
,
Picon-Feliciano
,
R.
, and
Alvarez
,
A. R. H.
, 2006, “
Heat Transfer Analysis in Metal Foams With Low-Conductivity Fluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
784
792
.
24.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1017
1031
.
25.
Tadrist
,
L.
,
Miscevic
,
M.
,
Rahli
,
O.
, and
Topin
,
F.
, 2004, “
About the Use of Fibrous Materials in Compact Heat Exchangers
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
193
199
.
26.
Dukhan
,
N.
,
Picon-Feliciano
,
R.
, and
Alvarez
,
A. R. H.
, 2006, “
Air Flow Through Compressed and Uncompressed Aluminum Foam: Measurements and Correlations
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
1004
1012
.
27.
Salas
,
K. I.
, and
Wass
,
A. M.
, 2007, “
Convective Heat Transfer in Open Cell Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1217
1229
.
28.
Kaviany
,
M.
, 1991,
Principles of Heat Transfer in Porous Media
,
Springer
,
New York
.
29.
Mahjoob
,
S.
, and
Vafai
,
K.
, 2008, “
A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3701
3711
.
30.
Edouard
,
D.
,
Lacroix
,
M.
,
Huu
,
C. P.
, and
Luck
,
F.
, 2008, “
Pressure Drop Modeling on Foam: State-of-the Art Correlation
,”
Chem. Eng. J.
0300-9467,
144
, pp.
299
311
.
31.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2003, “
Simulations of Flow Through Open Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
825
834
.
32.
Kaviany
,
M.
, 1985, “
Laminar Flow Through a Porous Channel Bounded by Isothermal Parallel Plates
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
851
858
.
33.
Vafai
,
K.
, and
Tien
,
C. L.
, 1982, “
Boundary and Inertia Effects on Convective Mass Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
25
(
8
), pp.
1183
1190
.
34.
Vafai
,
K.
, and
Tien
,
C. L.
, 1981, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
24
, pp.
195
203
.
35.
Dukhan
,
N.
,
Ramos
,
P. D.
,
Cruz-Ruiz
,
E.
,
Reyes
,
M. V.
, and
Scott
,
E. P.
, 2005, “
One-Dimensional Heat Transfer Analysis in Open-Cell 10-PPI Metal Foam
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
5112
5120
.
36.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
557
565
.
37.
Ghosh
,
I.
, 2008, “
Heat-Transfer Analysis of High Porosity Open-Cell Metal Foam
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
034501
.
38.
Ghosh
,
I.
, 2009, “
Heat-Transfer Analysis of High Porosity Open-Cell Metal Foam
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
1488
1494
.
39.
Giani
,
L.
,
Groppi
,
G.
, and
Tronconi
,
E.
, 2005, “
Mass Transfer Characterization of Metal Foams
,”
Ind. Eng. Chem. Res.
0888-5885,
44
, pp.
4993
5002
.
40.
Giani
,
L.
,
Groppi
,
G.
, and
Tronconi
,
E.
, 2005, “
Heat Transfer Characterization of Metallic Foams
,”
Ind. Eng. Chem. Res.
0888-5885,
44
, pp.
9078
9085
.
41.
White
,
F. M.
, 1986,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
42.
Despois
,
J. F.
, and
Mortensen
,
A.
, 2005, “
Permeability of Open-Pore Microcellular Materials
,”
Acta Mater.
1359-6454,
53
, pp.
1381
1388
.
43.
Lage
,
J. L.
, 1998, “
The Fundamental Theory of Flow Through Permeable Media From Darcy to Turbulence
,”
Transport Phenomena in Porous Media
,
D. B.
Ingham
, and
I.
Pop
, eds.,
Elsevier
,
Oxford
, pp.
1
30
.
44.
Fourie
,
J. G.
, and
Du Plessis
,
J. P.
, 2002, “
Pressure Drop Modeling in Cellular Metallic Foams
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
2781
2789
.
45.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
, 2002, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
120
129
.
46.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
, 2003, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
0167-6636,
35
, pp.
1161
1176
.
47.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
, 2000, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
572
578
.
48.
Kays
,
W. M.
, and
London
,
A. L.
, 1950, “
Heat-Transfer and Flow-Friction Characteristics of Some Compact Heat-Exchanger Surfaces—Part 2
,”
Trans. ASME
0097-6822,
72
, pp.
1087
1097
.
49.
Dukhan
,
N.
, and
Patel
,
P.
, 2008, “
Equivalent Particle Diameter and Length Scale for Pressure Drop in Porous Metals
,”
Exp. Therm. Fluid Sci.
0894-1777,
32
(
5
), pp.
1059
1067
.
50.
Lacroix
,
M.
,
Nguyen
,
P.
,
Schweich
,
D.
,
Pham Huu
,
C.
,
Savin-Poncet
,
S.
, and
Edouard
,
D.
, 2007, “
Pressure Drop Measurements and Modelling on SiC Foams
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
3259
3267
.
51.
Richardson
,
J. T.
,
Peng
,
Y.
, and
Remue
,
D.
, 2000, “
Properties of Ceramic Foam Catalyst Supports: Pressure Drop
,”
Appl. Catal., A
0926-860X,
204
, pp.
19
32
.
52.
Liu
,
J. F.
,
Wu
,
W. T.
,
Chiu
,
W. C.
, and
Hsieh
,
W. H.
, 2006, “
Measurement and Correlation of Friction Characteristic of Flow Through Foam Matrixes
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
329
336
.
53.
Ashby
,
M. F.
,
Evans
,
A.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
, 2000,
Metal Foams: A Design Guide
,
Butterworth-Heinmann
,
Oxford, UK
.
54.
Shah
,
R. K.
, 1980, “
Compact Heat Exchangers
,”
Heat Exchangers, Thermal-Hydraulic Fundamentals and Design
,
S.
Kakac
,
A.
Bergles
, and
F.
Mayinger
, eds.,
Hemisphere
,
Washington, DC
, pp.
111
151
.
55.
Shah
,
R. K.
, and
Sekulic
,
D. P.
, 2003,
Fundamentals of Heat Exchanger Design
,
Wiley
,
New York
.
You do not currently have access to this content.