This paper consider the effects of temperature ratio on the heat transfer from an array of jets impinging on a flat plate. At a constant Reynolds number of 18,000 and a constant Mach number of 0.2, different ratios of target plate temperature to jet temperature are employed. The spacing between holes in the streamwise direction X is 8D, and the spanwise spacing between holes in a given streamwise row Y is also 8D. The target plate is located 3D away from the impingement hole exits. Experimental results show that local, line-averaged, and spatially averaged Nusselt numbers decrease as the TwaTj temperature ratio increases. This is believed to be due to the effects of temperature-dependent fluid properties, as they affect local and global turbulent transport in the flow field created by the array of impinging jets. The effect of temperature ratio on crossflow-to-jet mass velocity ratio and discharge coefficients is also examined.

1.
Martin
,
H.
, 1977, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
0065-2717,
13
, pp.
1
60
.
2.
Schulz
,
A.
, 2001, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
135
146
.
3.
Kercher
,
D. M.
, and
Tabakoff
,
W.
, 1970, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
0022-0825,
92
, pp.
73
82
.
4.
Metzger
,
D. E.
,
Yamashita
,
T.
, and
Jenkins
,
C.
, 1971, “
Impingement Cooling of Concave Surfaces With Lines of Circular Air Jets
,”
ASME J. Eng. Power
0022-0825,
91
, pp.
149
158
.
5.
Chupp
,
R.
,
Helms
,
H.
,
McFadden
,
P.
, and
Brown
,
T.
, 1969, “
Evaluation of Internal Heat-Transfer Coefficients for Impingement Cooled Turbine Airfoils
,”
J. Aircr.
0021-8669,
6
(
3
), pp.
203
208
.
6.
Metzger
,
D. E.
, and
Korstad
,
R.
, 1972, “
Effects of Crossflow on Impingement Heat Transfer
,”
ASME J. Eng. Power
0022-0825,
94
, pp.
35
41
.
7.
Chance
,
J. L.
, 1974, “
Experimental Investigation of Air Impingement Heat Transfer Under an Array of Round Jets
,”
Tappi J.
0734-1415,
57
(
6
), pp.
108
112
.
8.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
, 1979, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME Trans. J. Heat Transfer
0022-1481,
101
, pp.
526
531
.
9.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
, 1981, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME Trans. J. Heat Transfer
0022-1481,
103
, pp.
337
342
.
10.
Lee
,
D. H.
,
Song
,
J.
, and
Jo
,
M. C.
, 2004, “
The Effects of Nozzle Diameter on Impinging Jet Heat Transfer and Fluid Flow
,”
ASME J. Heat Transfer
0022-1481,
126
(
4
), pp.
554
557
.
11.
Garimella
,
S. B
, and
Nenaydykh
,
B.
, 1996, “
Nozzle-Geometry Effects in Liquid Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
14
), pp.
2915
2923
.
12.
Shuja
,
S. Z.
,
Yilbas
,
B. S.
, and
Budair
,
M. O.
, 2005, “
Influence of Conical and Annular Nozzle Geometric Configurations on Flow and Heat Transfer Characteristics Due to Flow Impingement Onto a Flat Plate
,”
Numer. Heat Transfer, Part A
1040-7782,
48
(
9
), pp.
917
939
.
13.
Siba
,
E. A.
,
Ganesa-Pillai
,
M.
,
Harris
,
K. T.
, and
Haji-Sheikh
,
A.
, 2003, “
Heat Transfer in a High Turbulence Air Jet Impinging Over a Flat Circular Disk
,”
ASME J. Heat Transfer
0022-1481,
125
(
2
), pp.
257
265
.
14.
Chung
,
Y. M.
, and
Luo
,
K. H.
, 2002, “
Unsteady Heat Transfer Analysis of an Impinging Jet
,”
ASME J. Heat Transfer
0022-1481,
124
(
6
), pp.
1039
1048
.
15.
Abdon
,
A.
, and
Sundén
,
B.
, 2001, “
Numerical Investigation of Impingement Heat Transfer Using Linear and Non-Linear Two-Equation Turbulence Models
,”
Numer. Heat Transfer, Part A
1040-7782,
40
(
6
), pp.
563
578
.
16.
Tong
,
A. Y.
, 2003, “
A Numerical Study on the Hydrodynamics and Heat Transfer of a Circular Liquid Jet Impinging Onto a Substrate
,”
Numer. Heat Transfer, Part A
1040-7782,
44
(
1
), pp.
1
19
.
17.
Laschefski
,
H.
,
Cziesla
,
T.
,
Biswas
,
G.
, and
Mitra
,
N. K.
, 1996, “
Numerical Investigation of Heat Transfer by Rows of Rectangular Impinging Jets
,”
Numer. Heat Transfer, Part A
1040-7782,
30
(
1
), pp.
87
101
.
18.
Seyedein
,
S. H.
,
Hasan
,
M.
, and
Mujumdar
,
A. S.
, 1995, “
Turbulent Flow and Heat Transfer From Confined Multiple Impinging Slot Jets
,”
Numer. Heat Transfer, Part A
1040-7782,
27
(
1
), pp.
35
51
.
19.
Rhee
,
D. H.
,
Yoon
,
P. H.
, and
Cho
,
H. H.
, 2003, “
Local Heat∕Mass Transfer and Flow Characteristics of Array Impinging Jets With Effusion Holes Ejecting Spent Air
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
6
), pp.
113
125
.
20.
Obot
,
N. T.
, and
Trabold
,
T. A.
, 1987, “
Impingement Heat Transfer Within Arrays of Circular Jets—Part I: Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME Trans. J. Heat Transfer
0022-1481,
109
, pp.
872
879
.
21.
Bunker
,
R.
, and
Metzger
,
D. E.
, 1990, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions—Part I: Impingement Cooling Without Film Extraction
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
451
458
.
22.
Fox
,
M. D.
,
Kurosaka
,
M.
,
Hedges
,
L.
, and
Hirano
,
K.
, 1993, “
The Influence of Vortical Structures on the Thermal Fields of Jets
,”
J. Fluid Mech.
0022-1120,
255
, pp.
447
472
.
23.
Bailey
,
J. C.
, and
Bunker
,
R. S.
, 2002, “
Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent
,” ASME Paper No. ASME GT-2002-30473.
24.
Taslim
,
M. E.
,
Pan
,
Y.
, and
Bakhtari
,
K.
, 2002, “
Experimental Racetrack Shaped Jet Impingement on a Roughened Leading-Edge Wall With Film Holes
,” ASME Paper No. GT-2002-30477.
25.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
, 2002, “
Mist∕Stream Heat Transfer With Jet Impingement Onto a Concave Surface
,” ASME Paper No. GT-2002-30475.
26.
Brevet
,
P.
,
Dejeu
,
C.
,
Dorignac
,
E.
,
Jolly
,
M.
, and
Vullierme
,
J. J.
, 2002, “
Heat Transfer to a Row of Impinging Jets in Consideration of Optimization
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
4191
4200
.
27.
Brevet
,
P.
,
Dorignac
,
E.
, and
Vullierme
,
J. J.
, 2001, “
Mach Number Effect on Jet Impingement Heat Transfer
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
409
416
.
28.
Florschuetz
,
L. W.
, and
Su
,
C. C.
, 1987, “
Effects of Crossflow Temperature on Heat Transfer Within an Array of Impinging Jets
,”
ASME Trans. J. Heat Transfer
0022-1481,
109
, pp.
74
82
.
29.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
30.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
(
1
), pp.
3
17
.
31.
Park
,
J.
,
Goodro
,
M.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
, 2007, “
Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
269
280
.
You do not currently have access to this content.