In this paper, we present an analytical double-series solution for the time-dependent asymmetric heat conduction in a multilayer annulus. In general, analytical solutions in multidimensional Cartesian or cylindrical (r,z) coordinates suffer from existence of imaginary eigenvalues and thus may lead to numerical difficulties in computing analytical solution. In contrast, the proposed analytical solution in polar coordinates (2D cylindrical) is “free” from such imaginary eigenvalues. Real eigenvalues are obtained by virtue of precluded explicit dependence of transverse (radial) eigenvalues on those in the other direction.

1.
Mulholland
,
G. P.
, and
Cobble
,
M. H.
, 1972, “
Diffusion Through Composite Media
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
147
160
.
2.
Mikhailov
,
M. D.
,
Ozisik
,
M. N.
, and
Vulchanov
,
N. L.
, 1983, “
Diffusion in Composite Layers With Automatic Solution of the Eigenvalue Problem
,”
Int. J. Heat Mass Transfer
0017-9310,
26
(
8
), pp.
1131
1141
.
3.
Desai
,
A.
,
Geer
,
J.
, and
Sammakia
,
B.
, 2006, “
Models of Steady Heat Conduction in Multiple Cylindrical Domains
,”
ASME J. Electron. Packag.
1043-7398,
128
, pp.
10
17
.
4.
Bulavin
,
P. E.
, and
Kascheev
,
V. M.
, 1965, “
Solution of the Non-Homogeneous Heat Conduction Equation for Multilayered Bodies
,”
Int. Chem. Eng.
0020-6318,
1
, pp.
112
115
.
5.
Lu
,
X.
,
Tervola
,
P.
, and
Viljanen
,
M.
, 2006, “
Transient Analytical Solution to Heat Conduction in Composite Circular Cylinder
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
341
348
.
6.
Shupikov
,
A. N.
,
Smetankina
,
N. V.
, and
Svet
,
Y. V.
, 2007, “
Nonstationary Heat Conduction in Complex-Shape Laminated Plates
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
335
341
.
7.
Geer
,
J.
,
Desai
,
A.
, and
Sammakia
,
B.
, 2007, “
Heat Conduction in Multilayered Rectangular Domains
,”
ASME J. Electron. Packag.
1043-7398,
129
, pp.
440
451
.
8.
Huang
,
S. C.
, and
Chang
,
Y. P.
, 1980, “
Heat Conduction in Unsteady, Periodic and Steady States in Laminated Composites
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
742
748
.
9.
Siegel
,
R.
, 1999, “
Transient Thermal Analysis of Parallel Translucent Layers by Using Green’s Functions
,”
J. Thermophys. Heat Transfer
0887-8722,
13
(
1
), pp.
10
17
.
10.
Haji-Sheikh
,
A.
, and
Beck
,
J. V.
, 1990, “
Green’s Function Partitioning in Galerkin-Base Integral Solution of the Diffusion Equation
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
28
34
.
11.
Yener
,
Y.
, and
Ozisik
,
M. N.
, 1974, “
On the Solution of Unsteady Heat Conduction in Multi-Region Finite Media With Time-Dependent Heat Transfer Coefficient
,”
Proceedings of the Fifth International Heat Transfer Conference
, JSME, Tokyo, Japan, Sep. 3–7, pp.
188
192
.
12.
Salt
,
H.
, 1983, “
Transient Heat Conduction in a Two-Dimensional Composite Slab. I. Theoretical Development of Temperatures Modes
,”
Int. J. Heat Mass Transfer
0017-9310,
26
(
11
), pp.
1611
1616
.
13.
Salt
,
H.
, 1983, “
Transient Heat Conduction in a Two-Dimensional Composite Slab. II. Physical Interpretation of Temperatures Modes
,”
Int. J. Heat Mass Transfer
0017-9310,
26
(
11
), pp.
1617
1623
.
14.
Mikhailov
,
M. D.
, and
Ozisik
,
M. N.
, 1986, “
Transient Conduction in a Three-Dimensional Composite Slab
,”
Int. J. Heat Mass Transfer
0017-9310,
29
(
2
), pp.
340
342
.
15.
Haji-Sheikh
,
A.
, and
Beck
,
J. V.
, 2002, “
Temperature Solution in Multi-Dimensional Multi-Layer Bodies
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
9
), pp.
1865
1877
.
16.
de Monte
,
F.
, 2003, “
Unsteady heat Conduction in Two-Dimensional Two Slab-Shaped Regions. Exact Closed-Form Solution and Results
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
8
), pp.
1455
1469
.
17.
Yeh
,
F.-B.
, 2007, “
Prediction of the Transient and Steady Temperature Distributions in a Two-Layer Composite Slab in Contact With a Plasma: Exact Closed-Form Solutions
,”
J. Phys. D: Appl. Phys.
0022-3727,
40
, pp.
3633
3643
.
18.
Singh
,
S.
,
Jain
,
P. K.
, and
Rizwan-uddin
, 2008, “
Analytical Solution to Transient Heat Conduction in Polar Coordinates With Multiple Layers in Radial Direction
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
261
273
.
19.
Yuen
,
W. Y. D.
, 1994, “
Transient Temperature Distribution in a Multilayer Medium Subject to Radiative Surface Cooling
,”
Appl. Math. Model.
0307-904X,
18
, pp.
93
100
.
20.
Singh
,
S.
,
Jain
,
P. K.
, and
Rizwan-uddin
, 2007, “
Finite Integral Transform Technique to Solve Asymmetric Heat Conduction in a Multilayer Annulus With Time-Dependent Boundary Conditions
,” submitted.
21.
Ozisik
,
M. N.
, 1993,
Heat Conduction
,
2nd
ed.,
Wiley and Sons
,
New York
.
22.
de Monte
,
F.
, 2002, “
An Analytic Approach to the Unsteady Heat Conduction Processes in One-Dimensional Composite Media
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
6
), pp.
1333
1343
.
You do not currently have access to this content.